NEVADA

PPPPPP IITIIIII L 00000 TTTTTTT
P P I L o o T
P P I L o o T
PPPPPP I L (o} o T
P I L o s) T
P I L o o T
P IITIITIX LLLLLLL 00000 T

PROGRAMMER'S REFERENCE MANUAL -
Fourtn Edition 1982

John A. Starkweather
University of California, San Francisco

Published by Ellis Computing
3917 Noriega Street
San Francisco 94122
(415) 753-0186

Copyright (C) 1979, 1981, 1982, John A. Starkweather, Ph.D.
All rights are reserved. The information presented here 1s
proprietary to John A. Starkweather, PhtD.

CP/M is a trademark of Digital Research Corporation

SECTION

1

NEVADA PILOT

TABLE OF CONTENTS

INTRODUCTION . e et teeeoseceesssensesenssnsosssanssan

1.0
1.1
1.2
1.3

INTRODUCTION ¢t eeeeeeneecsnsassocncooacsonsnss
WHAT CAN BE DONE WITH PILOT?.eecocsccscnnnss
wWHY NOT BASIC, OR ANOTHER LANGUAGE?..eeoaess
TERAS AND CONVENTIONS.eeeveeeseesssesaananss

OPERATION.0|-Qo.o.‘ool‘--oonooo.oo.o'oto--.u-o-‘-

PROGRAM DEVELOPMENT .. cveeeseosecsscscceasasnsccnss

3.1
3.2

INTRODUCTION e eeeeeeeoeasocosssaansssaasacss
CONDITIONAL EXECUTION, CONTINUATION LINES,

LABELS . cttetreecenossncscseaceosnnnnnnnscs cesenn
JUMPS AND SUBROUTINESt cetasccnsasannsaess
PILOT VARIABLES ¢t eeeeeeeeoscscoccssasosnnnass
COMPUTE AND REMARK...ueeeverveeesscencscaaassans
IMMEDIATE OPERATION.cceeeecsoncecncassononns

PILOT STATEMENT DESCRIPTIONS.:.:ceececsccacccnaaans

4.1
4.2

N

v o m
w3

STATEMENT SUMMARY ¢ e eveeecccceccoocsaconassns
CORE INSTRUCTIONS.:ceceecesssccesasansacsasas
T, (rd), ¥, N, A, (AH), M, (AJ),

J, (JdM), U, £, C, R, (RW)

CURSOR AND VIDEO CONTROL INSTRUCTIONS.::sesss
CA, CH, CL, CE, RL

AIDS TO CONVERSATION .. ceeeecesceseeesnsonncns
FOOT, PAUSE, VNEW, PR, CALL, XI, X3

‘SE'I\ PARAE‘&E‘PERS..I.-...........l....-.‘....l.

SET, INMAX

FILE MANIPULATION INSTRUCTIONS.ccecesccccsss
CREATF, KILLF, OPENF, CLOSEF, WRITE, APPEND,
RW, REWIND, EOF, LOAD, READ

COMMANDS USUALLY USED 1IN

IMMEDIATE MODE.eeeeeeececcocannccnonsnansasss
BYE, GET, RUN, LIST, SAVE, '

NEW, INFO, VNEW, DIR

CONTROL OF VIDEO CASSETTE RECORDER..ccccsss.

ERING AND EDITING YOUR PILOT PROGRAM....eeeeen

THE EDIT COMMAND . veeeesesoseenscscsnscsnaasesns
COMMAND KEY LISTeececocosconcceaseascsanssasnss
DETAILED COMMAND DESCRIPTION.:ecesescaancsnses
5.3.1 Cursor Positioning CommandS...eeeesss
5.3.2 Screen Scroll CommandS.ecesescessassss
5.3.3 Direct File Positioning CommandsS.....
5.3.4 File lodification CommandS.e.eceeesoes

ERROR MESSAGES AND HOW TO DEAL WITH THEM.........
PROGRAMS TO TEST PILOT FUNCTIONS.:eeeeeesosoeasnas
CONFIGURING AN UNKNOWN TERMINAL..cocceeeooasocsnsse
INDEX TO PILOY STATEMENTS AND COMMANDS .¢eeeeecans

Table of Contents

O 0

10
12
15
lo
17

19
19
20

37
40
47

49

60

638

71
71
72
73
73
73
73
74
76
79
109
113

T

NEVADA PILOT : PAGE 1

SECTION 1
NEVADA PILOT: GENERAL INFORMATION
1.0 INTRODUCTION

PILOT is a programming language for interactive programs, i.e.,
for those programs in which the user participates in a kind of
conversation with the computer by typing responses to questions
posed by the computer. PILOT stands for Programmed Inquiry,
Learning Or Teaching, and has been used most commonly as a lang-
uage for computer-assisted instruction. It was first developed
by John A. Starkweather at the University of California in San
Francisco and has been implemented on a variety of large and
small computers.

This guide provides a description and operating procedures for a
version of PILOT that runs on an 8080, z-80, or 8085 micro-
computer equipped with diskette storage and a visual display
terminal. The latter can be either a memory-mapped display or
the more common terminal (CRT) with serial connection to the
computer.

Portions of this manual and a related PILOT, Version 1.1, were
first prepared for the National Library of Medicine, Bethesda,
Maryland. Other portions were developed for PILOT Version 2.2, a
cassette tape version for the Processor Technology Sol Computer.

1.1 WHAT CAN BE DONE WITH PILOT?

PILOT enables a person without any prior computer experience to
develop and test dialogue programs for use in an instructional or
training context. The simplicity of the instruction format, as
well as the conversational structure of the system, make it easy
for a teacher to prepare a program and easy for a student to use
it, with a minimum of training.

PILOT makes it possible, for example, to present the student with
a reading passage, allow time to study it, and then ask a series
of questions to check on comprehension. The program might include
computer responses keyed to the answer a student has given, or it
might ask for the student's reaction to the passage, scan his
response, and comment or provide suggestions based on that
response.

A teacher can prepare a vocabulary gquiz that keeps track of a
student's score and then moves on or repeats a lesson, depending
on the student's performance or choice. A PILOT program can
introduce a mathematical word-problem and offer the solution,
step by step, or it can give the student the opportunity to
discover as many of the steps as possible, with-the computer
hinting along or even revealing a step, when necessary.

Section 1l: General Information.

NEVADA PILOT PAGE 2

PILOT is also a vehicle for learning about computers. You can
write a program that teaches how to write a PILOT program and let
the student save the program, so that it can be executed or
revised on another occasion. (Or the student can write, edit,
and run the program in the same sitting.)

A user can have considerable control over the order of events in
a program, and is therefore not likely to find the experience
intimidating. Users can select what they want to read, or decide
whether to repeat an exercise or execute another program. They
can even determine where responses will appear on the screen or
make them appear with reverse video (i.e., white letters on
black, for a screen set to black letters on white, or vice-versa)
to emphasize a particular word in the answer. Users can keep
their answers, list them, and review the exercises with which
they had difficulty. PILOT is also suitable for writing conver-
sational games.

Section 3 of this manual introduces the elements of PILOT by
proposing a simple program design and showing how the PILOT
language can be used to realize and expand it.

Just as in a spoken language, you can express many ideas and
accomplish many tasks by combining a handful of simple statement
types.

1.2 WHY NOT BASIC, OR ANOTHER PROGRAMMING LANGUAGE?

It is possible to write interactive programs in a general purpose
programming language such as BASIC, APL, FORTRAN, or PL/l instead
of in PILOT. The reverse is certainly not true, for PILOT is a
specialized language oriented toward dialogues, drills, tests,
etc., rather than toward some kinds of computation handled well
by general purpose languages. The advantage of PILOT over gener-
al purpose languages such as BASIC is that interactive programs
are easier to write in PILOT. If a BASIC program is to handle
free-response dialogue, the programmer must often make unwieldy
arrangements for processing input and comparing words or portions
of words that the program must recognize. In PILOT this kind of
processing is easy, and the programs are more readable oy human
beings than they might be if they were written in some other
computer language.

1.3 TERMS AND CONVENTIONS

The following terms will appear frequently. The definitions
given here are not technical, nor even very complete, but should
provide some insight into the kinds of concepts that are being
described when these words and expressions are used.

A BUFFER is a temporary storage space set aside within the compu-
ter memory for a collection of possible items. A PROGRAM BUFFER,
for example, is space set aside for the information necessary to
execute a certain progranm.

Section 1: General Information.

NEVADA PILOT PAGE 3

A CHARACTER may be a letter, a punctuation mark, a number, or a
symbol. Note that CHARACTERS, even those which represent numb-
ers, are not involved in computations, i.e., the symbol "3" plus
the symbol "2" does not yield the number "5", the symbol "5", or,
in fact, anything meaningful for our purposes. A CHARACTER is not
a quantity, but a representation. A CONTROL CHARACTER is formed
by hitting the control key and another key simultaneously. Some
CONTROL CHARACTERS function as commands to the computer and are
not displayed on the screen. Others are displayed as special
_ graphic symbols.

CODE has two meanings. In its more standard usage, the CODE for
something is a sign that is used to stand for the thing. A more
specialized meaning of the word is: that sequence of instruc-
tions, in a computer language, that makes up a computer program,
or part of a computer program. When you write a PILOT program,
you will be writing CODE which is translatable into activity by
the computer.

A COMMAND is a direct instruction to the computer. A STATEMENT,
by contrast, is indirect. It is entered as a line in a progranm,
and initiates no immediate activity. Almost every "sentence" in
the PILOT language can be used both as a program STATEMENT and as
a direct COMMAND. The convention we will adopt for this is to
use the word STATEMENT, except in the context of immediate execu-
tion. (The COMMANDS which belong to the PILOT EDITOR are not
part of the PILOT language, and always result in immediate execu-
tion.) |

A CONSTANT is an item of data that has a fixed, or constant,
value. 32 is a CONSTANT.

A CURSOR is the rectangle or blinking underline that is visible
on the video display screen. It serves to show the screen posi-
tion at which the next CHARACTER will be displayed.

A FILE is a collection of related information, usually named and
referenced as a unit. Tnink of a FILE as a way of saving such a
body of information for subsequent use. A FILE can contain a
program, text, or data of various kinds.

EDITing a FILE is modifying that FILE in any way, including
typing it into the computer for the first time. The EDITOR is
that program, or that part of a program, which enables you to use
certain direct COMMANDS to EDIT a FILE.

EXECUTION is the actual "running"” of a program. When execution
occurs, the computer follows programmed instructions.

A DATA COLLECTION FILE is a FILE set up to store information that
the computer receives, usually from the keyboard. A FILE is very
different from a BUFFER, in that 1) a BUFFER is a temporary
storage area that exists only during the operation of a program,
whereas a FILE (at least for our present purposes) is a more
permanent record, 2) a FILE is usually recorded on some kind of

Section 1l: General Information.

NEVADA PILOT PAGE 4

device (e.g.,tape or disk) outside the "memory" of the computer,
whereas a BUFFER does not exist, theoretically, when the computer
is inactive, and 3) a FILE consists of saved information, whereas
a BUFFER is a place where information can temporarily reside.
Recording a FILE on an external device is called WRITING the
FILE; retrieving a FILE from storage is called READING it.

An INTEGER is a positive or negative whole number. 5,-5, and 0
are all INTEGERS. ‘

LOADING a program is reading into the computer the instruction
set that makes up the program. You cannot execute a PILOT prog-
ram that you have saved on disk until you have LOADED it. 1In
some systems LOADING a program will also cause it to EXECUTE.

MEMORY is the storage area of the computer. One of the important
facts to remember about computer MEMORY is that it is limited.
It is possible for a program, or a DATA COLLECTION FILE, to be
too large for the computer to accommodate. We will discuss ways
of making sure that the programs we are using are not too big to
fit into MEMORY. (A BUFFER is one way of allocating a portion of
MEMORY.)

A STRING, or CHARACTER STRING, is a set of consecutive CHARAC-
TERS. "DOG,"™ "23," and "This is a sentence" are all STRINGS.

FORMAT is used in this manual to refer to the required form or
structure of a PILOT statement. Each statement type is headed by
a description of its format, using angle brackets to indicate
variable content, and square brackets to indicate optional cont-
ent. Thus, the T statement is partially described as follows:

[<label>] T [<cond>] : <message>

label, cond, and message are elements of variable content.
label and cond are optional and may not be present.

A VARIABLE, by contrast to a CONSTANT, is a name to which differ-
ent values can be assigned. The equation x = 3 causes a value of
3 to be assigned to a variable named x. Computer languages have
rules for designating VARIABLES. We will discuss rules for PILOT
variables in Section 3.4.

The following conventions will be used here:

1. PILOT statements and commands will be represented in capital
letters, even though you do not really have to enter them in

capital letters. EDIT, LOAD, and BYE are all examples of PILOT
commands.

2. Where an expression is enclosed by angle brackets <like this>,
the expression tells what kind of item should be typed as part of
a statement. For example, <number> indicates that a number
should be entered (without the brackets).

<cr> indicates that a carriage return should be struck.

Section 1l: General Information.

NEVADA PILOT PAGE 5

3. Square brackets [like these] enclose an optional element in a
statement. For example, [<filename>] indicates that the use of a
filename is optional. The brackets, again, are not literal.
That is, they are not part of the final statement.

4. In examples that contain PILOT code, two rOwWS of dots are used
to indicate code that was omitted because it is irrelevant to the
example.

<statement>

<statement>

5. "cond" is an abbreviation for wconditional expression." A
conditional expression is used in cases where a statement should
be executed only if a specific condition is met. Conditional
expressions are 3discussed at length in Section 3.2.

6. Regard the video display screen as divisible into horizontal
ROWS and vertical COLUMNS. When you type in a command, the
characters that you type will fall in the same ROW, but in
consecutive COLUMNS. It is not necessary to begin typing a PILOT
statement in any particular COLUMN within a ROW. 1In the examples
in this manual, indentation may be used for the sake of readabil-
ity; it has no effect, whatever, on the operation of the program.

7. Quotation marks (" ") are used to enclose a message that
appears on the screen, e.g., "READY" or "*NO ROOM".

8. Control characters, those formed by depressing the control key

in conjunction with another key on the keyboard, are denoted by
ctrl-<character>; for example, ctrl-A.

Section 1: General Information.

NEVADA PILOT PAGE 6

SECTION 2
INSTALLATION AND OPERATION
2.1 Installing PILOT on your equipment

The PILOT package contains a programmer's reference manual and a
disk. The disk contains the following files:

NVPILOT.COM TST~-MJ.PLT
PLTST.PLT TST-JM.PLT
PLTSTZ2.PLT TST-VN.PLT
TST-C.PLT TST-I.PLT
TST-S.PLT TST-WILD.PLT
WAPP.PLT HODGE.PLT
READ-ME.TXT NVPILOT.PRN

Your first step should be to prepare a systems disk, a disk with
CP/M (either Version 1.4 or 2.2), and copy these programs onto
it. If you have two disk drives, you can prepare a CP/M disk
containing PIP, place it in drive A, place tne PILOT disk in
drive B, and issue the following command: A> PIP A:=B:* *

Put the original PILOT disk away in a safe place.

Make sure that your default disk (the logged-on disk drive) has
enough room for the 16K PILOT.COM file that will be created
there. You may need to delete some other files before taking the
next step.

Next, configure PILOT for your CRT or video display by issuing
the command: A> NVPILOT The program will present you with
a choice of terminals and prompt your next steps. PILOT.COM will
be created on the default disk by this process. This is the
PILOT system configured for your equipment.

If your terminal is listed, you need do no more tnan press one
Key in order to proceed. 1If your terminal is not listed, press
"U" for unknown, and you will be asked a series of questions
about its characteristics. See Section 8 for an example of the
interaction involved in the configuring process.

During installation and after choosing your terminal, you will be
asked to choose between full PILOT for author use and an abbrev-
iated PILOT for student use. Tne student version does not give
access to the EDIT function and avoids potentially damaging
immediate commands. 1In addition, you will be asked to choose
whether you wish the DIR command (that displays the disk direct-
ory) to show all files for just files of type .PLT .

After PILOT has been configured run the test program PLTST to
make sure everything is working correctly: A> PILOT PLTST This
program 1is printed in Section 7 so that you can also use it to
learn some of the details of PILOT programming. If PILOT works

properly you may remove NVPILOT.COM from your operational disk to
free more space.

Section 2: 1Installation and Operation.

NEVADA PILOT PAGE 7

If your computer is an Apple, you must run the Microsoft program
to configure the SoftCard: MBASIC CONFIGIO Select the Soroc IQ-
120 as your software terminal. Also, using the CONFIGIO, delete
the reasignment of all control keys. If you are using the Videx
80 column board on your Apple, the Control-A key has been reas-
signed to Control-S and the Control-S key has been reassigned to
Control-D.

The file NVPILOT.PRN contains information for further configuring
to meet special needs or to change keys used for special func-
tions. For example, some models of Televideo terminals that do
not respond to codes for insert line or delete line require that
you use this method to obtain these functions. Select the Tele-
video choice when you run NVPILOT and if these functions do not
work, then use DDT to place a zero in the IL and DL locations.
This will force a rewriting of the screen for these functions.

2.2 Running PILOT

Once the sYstem prompt from CP/M has been obtained ("A>"), you
may start PILOT in one of two ways:

Type: PILOT (Return)

This puts PILOT into operation in immediate mode with an
empty program area. A title and copyright notice will
appear, followed by a list of available immediate commands,
and the word "READY".

or Type: PILOT <file name> (Return)

where <file name> indicates the name of an existing PILOT
program. PILOT first loads the referenced PILOT program
text and begins execution of the program in run mode.
The file name can be prefaced by a drive, as in:
A> PILOT B:MYPROG

2.3 PILOT Operating iModes

At any time, PILOT is in-one of three operating modes; either
immediate mode, run mode, or edit mode. In immediate mode, a
limited number of commands are available which will be executed
as soon as a terminating carriage return is entered. In run
mode, execution is under control of a previously prepared PILOT
program, while in edit mode, the user is able to develop or
change the text of a PILOT program. ’

Immediate Mode

PILOT starts in immediate mode. The system signals that it is
ready to accept an immediate command by displaying the prompt
"READY" and displaying a visible cursor (normally a blinking
underline character) at the beginning of the following line. A

Section 2: Installation and Operation.

NEVADA PILOT PAGE 8

display of available immediate commands may be seen by typing "2"
(Return). These are described in Section 4.7. The system re-
mains in immediate mode until you type either "RUN" or "EDIT"
which causes a change to run mode or to edit mode.

Run Mode

In run mode PILOT interprets and executes (follows the instruc-
tions of) the program currently in the program buffer.

The program will continue to execute until:

a PILOT End statement is executed in the program with no
return pending from a Use statement,

or there are no more statements to execute,

or the user types "\" (Return)
(c;rl—F may be substituted if "\" is not available).

When one of these conditions occurs PILOT returns to immediate
mode.

In some of the program examples, immediate mode is referred to
as "PILOT restart".

£dit Mode

In edit mode PILOT displays the contents of the program buffer
and allows addition or changes to it. Edit mode provides a
variety of user commands for making changes to the current prog-
ram, with direct and immediate visual display of all cnanges.

If you are creating a new program, you will normally start PILOT
and type "EDIT" to enter the edit mode. 1In this mode you can
Create PILOT program text within the computer's memory. When you
leave edit mode and return to immediate mode, you may wish to
SAVE the program you have created or type "RUN" to execute it.

Edit mode is described more completely in Section 5. Edit mode

is not available to the user of PILOT that has been configured
for an abbreviated student version.

Section 2: Installation and Operation

NEVADA PILOT PAGE 9

SECTION 3

PROGRAM DEVELOPMENT

3.1 INTRODUCTION

A student is sitting at the computer keyboard. He is about to
begin executing a PILOT program that he has been told consists of
_a reading comprehension exercise. You have shown him how to load

the program, or he has read Section 2 of this manual and found
the instructions for himself. He types LOAD <program name>
<cr>, and soon sees on the screen the question:

"Do you like to read? (Type in an answer.)"
He types , "Not much," and the computer replies:
"You don't? Well, this exercise isn't too long."

Or he types , "Yes, most of the time," and the computer
replies:

"Oh, good. I hope you enjoy this exercisel"

The reading exercise program has done four things so far: 1)
typed text, 2) accepted an answer, 3) matched that answer with
some kind of vocabulary data, and 4) replied accordingly (by
again typing text). Let us use a shorthand for the three basic
functions involved:

T: for "type text"
A: for "accept an answer"
M: for "match"

Let us also suppose that, by appending a Y or an N to one of the
codes, we can "condition" the performance of the function, i.e.,
we can make performance conditional upon a successful. match of
the student's last response with the vocabulary data. Here is the
hypothetical program:

‘

CODE FUNCTION
T:Do you like to read?... Type this text on the video display.
A: Accept an answer from the keyboard.
M:no : Check for a match with this text.
TY:You don't? Well,... Type this text if a match was found.
TN:0h,good. I hope... Type this if a match was not found.

The sequence of statements in the column labeled "CODE" is, as
you have probably guessed, valid PILOT language.

A PILOT program consists of a series of statements that give a

step-by-step description of what the computer must do to interact
with a person sitting at a keyboard. An instruction code,

Section 3: Program development.

NEVADA PILOT PAGE 10

consisting of one or more letters followed by a colon, defines
the statement type and determines its function.

Single letter codes define "core" instructions that occur in all
versions of PILOT. Of these, the three most important are the
ones we have already used (T, A and M).

The letters Y and N are "conditioners" that can be appended to
another code, causing it to be effective or not depending upon
the success of the last attempted match.

PILOT is designed for the development of conversational programs
that allow relatively free response by the user. As indicated
in the example above, recognition of user respoilc2zg is accom-
plished by searching the responses for specific words or word
stems. 1In ordinary conversation, one or more words in a sentence
often carry most of the sentence's meaning. The M statement is
used to define those words, portions of words, or word groups
that we want recognized in an answer. 1In the example we have
been using, the M-statement will find the desired match in the
answers "no," "not much," "nope,"” "not really," "I don't know,"
and "Not unless it's about sports.” It will not respond properly
to "only comic books," "very seldom," or "Sometimes."

Conversation in a PILOT program is facilitated both by the struc-
ture of the language, and by the programmer's ingenuity in de-
signing questions and matching replies. For example, it is more
effective to search for a negative answer than to search for a
positive one, because the letter combination "no" will occur in
almost all negative answers. It is permissible to use more than
one word or word stem in an M: statement.

Detailed explanations of all of the statements in the PILOT
language are found in Section 4.

3.2 CONDITIONAL EXECUTION, CONTINUATION LINES, LABELS

If we were limited to asking a gquestion, scanning for a partic-
ular word in the answer, and replying accordingly, PILOT would
not be a very useful language. Fortunately there are other
statements and options that we can use to accomplish more compli-
cated tasks. For our reading comprehension program, we want to
be able to present a reading passage more than one line long, ask
related questions, and, perhaps, move to one of several possible
points in the program, depending upon the fulfillment of a cer-
tain condition. To do these things, we need provisions (some of
which we have already discovered) for conditional execution, ways
to continue text beyond the first line entered, and a way of
labeling parts of a program so that control can be directed to
any one of them by name. (To direct control is to determine which
statement of the program will be executed next.) PILOT has all
of these capabilities.

Section 3: Program development.

NEVADA PILOT PAGE 11

CONDITIONAL EXECUTION

As we have already seen, Y or N can be appended to any statement,
as a "conditioner" of that statement. Operation will then depend
upon whether the last M statement was successful. Y: by itself
is a shorthand form of TY: Likewise, N: by itself is a shorthand
form of TN:

The execution of a PILOT statement can also be made dependent
upon the value of a numeric variable or expression; the variable
or expression should appear in parentheses between the command
code and the colon. (Rules for variables are given in Section
3.3; rules for expressions are given in Section 4, in the discus-
sion of the Compute statement.) If the value of the variable or
expression is greater than 0, then the statement will be exec-
uted. Otherwise it will be ignored. TY(X): will be executed if
X=10, but not if X=0.

If both a numeric condition and a ¥Y-N condition are used in the
same statement, the statement will be executed only if both of
the prescribed conditions are satisfied. For example, the state-
ment TY(X): will type subsequent text only if the most recent
match was successful AND the value of X is positive. (For in-
stance, you can determine that a student may proceed to the next
exercise only if 1) he has no questions on the previous exercise,
and 2) his score on that exercise was acceptable.) T(X)Y: and
TY(X): are interchangeable.

CONTINUATION

If you want to type a number of lines of text, only the first
line must be preceded by a T: All subsequent lines may be pre-
ceded simply by a colon.

T:THIS TEXT WILL BE DISPLAYED
:AND THIS WILL ALSO BE DISPLAYED

PILOT, Version 5 will halt and display unrecognized PILOT
statements, but by putting colons in column one you can "draw" a
picture by arranging characters on the screen:

EXAMPLE:
(PILOT program) (display)
T: What shape is this? What shape is this?
A: (user enters "triangular")
M:triang

- ——— o ——— - - - — > - - - o - e . W M M W G

Section 3: Program development.

NEVADA PILOT PAGE 12

PILOT LABELS

Any PILOT statement may include a label, either as the first
element of the statement or on the line above it. A label
serves as a marker in the code, so that you can say in your
program, "Go to this point right away, and do whatever you are
told when you get there." (As we shall see, you can also say,
"and be sure to come back, when you're finishedl!") PILOT labels
begin with an asterisk (*) and end with a blank. They may have a
maximum of ten characters. If a label is the only item in a
line, it refers to the statement or group of statements following
it.

No complaint is made if there are duplicate labels, but only the
first in sequence will be found when the label is referenced.

EXAMPLE:
(PILOT program) (display)
*LABEL
T:DISPLAY THIS DISPLAY THIS

L Y o e 0o e

3.3 JUMPS AND SUBROUTINES

Now that we have some additional tools, we can expand and devel-
op our reading exercise program. For the sake of convenience,,
let us say that the reading passage that we want to use is a
popular fairy tale.

T: Once upon a time....

: And they lived happily ever after.

The student will be considering the text in screenfuls, that is,
in segments with a maximum number of lines limited by the size of
the screen. By inserting an A statement or FOOT statement after
every screenful of information, we give the student an opportun-
ity to indicate, by his response, that he has finished reading
that portion of the text and is prepared to continue with the
exercise, If we did not arrange for a pause, the text would
appear and then disappear off the top of the screen much too fast
for anyone to read it.

Thus, we might display the first part of "Beauty and the Beast,"
in which a father takes leave of his three daughters before
setting out on a business trip. He asks each daughter, in turn,
what she would like him to bring her

Section 3: Program development.

NEVADA PILOT PAGE 13

We have already used one easy method of programming question and
answer sequences. Using the T, A, and M statements, we can ask a
question and analyze the answer in either of the following ways:

- T: What did the youngest daughter want her father
: to bring her when he returned from his journey?
A:
M: rose
TN: No, she wanted him to bring her a rose.

or
T: What did the youngest daughter want her father
: to bring her when he returned from his journey?
: Enter the number of the correct response.
: 1) a necklace
: 2) a rose
: 3) a frog
A:
M: 2
TN: No, she wanted him to bring her a rose.

After the student has answered the first set of questions, we
can give him another choice. We can use a T statement to ask
him, "Do you want to read the last story again?" Presumably, if
his answer is negative, we will want to go on to the next story;
if his answer is affirmative, wé will want to jump backward in
the program and repeat execution of those statements that cause
the story to be displayed.

To effect the jump, we need two elements of PILOT language: a
label to which todirect the action of the program, and a state-
ment that directs the action to that label. The PILOT statement
that initiates a jump to a specified label is the J: statement.
Let us go back and insert a label at the beginning of the orig-
inal series of T statements:

*STORY1
T: Once upon a time...

and then let us insert the J statement, after the first group of
guestions:

T: Do you want to read the last story again?
A:

M: yes

JY: *STORY1l

Section 3: Program development.

NEVADA PILOT PAGE 14

Notice the use of the conditioner as part of the J statement.
With the program arranged this way, the student who asks to have
the story repeated must answer all of the questions again. The J
statement does not provide for any return to the original state-
ment. What if you wanted the student to be able to review the
story without answering the questions again or to look back at
the story between questions to correct a wrong answer before
proceeding? We need a way to isolate a group of statements to
whica we can jump from wherever we are, without losing our place
in the execution of the program. (We also need a way to jump
ahead in a program, without necessarily having to skip all of the
intervening code.) A group of statements that we reference as a
unit and after whose execution we automatically return to our
prior position in the program, is called a SUBROUTINE. A PILOT
statement that calls for the USE of a certain labeled group of
statements as a subroutine is the U statement.

Touse aU statement to enable our student to review what he has
just read, we can mark the beginning and end of the set of
statements that we want regarded as a subroutine. The label
*STORY1l, which we inserted to mark the destination of a J state-
ment, will mark the beginning of the subroutine STORYl. The
statement to mark the end of a subroutine, or of an entire pro-
gram, 1is called the End, or E statement.

In our example, the E statement should be placed at the conclu-
sion of the text:

*STORY1

T: And they lived happily ever after.
E:

e 0

The U statement can replace the current J statement, or it can be
put after any one of the individual questions, or it can be
inserted repeatedly, wherever you want the story to be displayed
again., At any of these points, you can have the student
"detour" to a vocabulary or grammar exercise witnin the same
program by marking a subroutine accordingly and calling it. The
subroutine can be called either unconditionally or depending upon
fulfillment of a specified condition. The format of a U state-
ment is identical to that of a J statement.

A subroutine may be used within another subroutine with the

limitation that no more than seven U statements may be pending at
once.

Section 3: Program development

NEVADA PILOT PAGE 15

*STORY1

T: And they lived nappily ever after.

E:

T: Do you want to read the last story again?
A

M: yes

UY: *STORY1

3.4 PILOT VARIABLES

A variable was defined earlier as "a name to which different
values can be assigned." In PILOT, we can concern ourselves
with two types of variables: numeric variables, and string
variables.

STRING VARIABLES

PILOT allows the input to an Accept (A:) statement to be saved as
a character string and retrieved later in the program. The
string variable name, with which the string will henceforth be
associated, is written after the colon in the A statement. A
string variable name begins with "$" and ends with a blank or
carriage return.

Later on, if the string variasle name appears in any portion of a
T:, RW:, M:, J:, or E: statement, or to the right of = in a C:
statement, it will bpe replaced with the value most recently
assigned to it. If there has not been a value assigned to it,
o: if the variable name is preceded by "\", the variable name,
itself, will be used by default.

EXAMPLE:

(PILOT program) (display)
T: what is your favorite story? What is your favorite story?
A:STITLE (User enters "Pinocchio")
T: Wwho 1s the aero in $TITLE? Wno is the hero in Pinocchio?
T: This is 3unxnown. Tnis 1s Sunknown.

- - ———— - ———— - — " o —— - — " o~ S - = S e

A string variable name may have a maximum of ten characters in
addition to the dollar sign. The maximum length of a character
string to be stored as a string variable 1is dictated by the
parameter INMAX, which can be set within a PILOT program and will
be described in 3Section 4.

Section 3: Program development.

NEVADA PILOT PAGE 16

You can change the value of a string variable by accepting new
contents in another A statement (tnereby causing the new entry to
supersede the former contents), or by assigning a new contents as
part of a C: statement.

String variables are erased with the VNEW:$ command, and also by
VNEW and NEW. VNEW:$ erases only string variables, VNEW erases
ooth string variables and zeroes numeric variables, and NEW also
erases the current program from memory and causes a complete
reset to startup conditions.

The special meaning of "$" to denote a string variable name is
cancelled if it is preceded by a backslash (\). Thus \3name will
be replaced by $name and not the contents of $name.

NUMERIC VARIABLES

Numeric variables may be assigned integer, or whole number,
values in the range of -32768 to 32707. Wumeric variaple names
begin with the pound sign character (#) and consist of one letter
(A-2). Like string variable names, they are inserted after the
colon in an Accept (A:) statement, so that whatever legal value
is entered becomes associated with the named numeric variable.
In the execution of an ensuing Type (T:) or Remark Write (RW:)
statement, the current value of a variable will be substituted
for the variable name. If no value nhas been assigned to the
variable, the current value is assumed to be zero.

EXAMPLE:
(PILOT program) (display)
A:#X "23" entered
T:THE VALUE IS #X THE VALUE IS 23

————— - — - - - - —-—— ————— - ——— - - — - W -~ — —————— - - -

You can change the value of a nuineric variable by accepting a new
value in another A statement (thereby causing the new entry to
supersede the former value), or by assigning a new value as part
of a Compute (C:) statement.

As described above for string variables, all numeric variables
are reset to zero by the commands VNEW:#, VNEW, and NEW.

The special meaning of "#" to denote a numeric variable name is
cancelled if it is preceded by a backslasn (\). Thus \#n will be
replaced by #n and not by the value of n.

3.5 COMPUTE AND REMARK

In our fairy tale example, we might want to dictate that a jump
be made, a subroutine used, or a message displayed, depending on
now well the student performed on the last set of exercises. 1In
anticipation of this need and other arithmetic applications,
PILOT provides a Compute (C) statement.

. Section 3: Program development.

NEVADA PILOT PAGE 17

EXAMPLE:
(PILOT program) (display)
T: How old are you? : How old are you?
A:§N (User enters "6")
C: N=N+1
T: Then you'll be #N next year. Then you'll be 7 next year.

- - - — - —— T W -) W S = S L CWS GUN G WS WD D L LS G . . G W - W - - —————

_ To keep track of a student's score on an exercise, we can insert,

after every M statement following a guestion, a command that adds
1 to the value of a numeric variable ON THE CONDITION that the

previous answer was correct:

T: What did the youngest daughter...

A:
M: rose
CY: N=N+1

" e 00

The C: statement has a generalized assignment capability for both
string variables and numeric variables. Conditions governing the
use of compute statements are discussed more explicitly in
Section 4.

The final “core" statement in this initial overview of PILOT is
the Remark (R:) statment, which might, at first glance, seem
almost useless, since its function is to tell PILOT, "Ignore
this remark."” Actually, the R statement can be very useful: as
you develop bigger and more complicated PILOT programs, you might
want to write yourself or another programmer notes about what is
happening in the code at a particular point. Say, for example,
you have a very long program, so long that you have divided it
into several PROGRAM SEGMENTS to be executed in succession. At
the beginning of a certain segment, you might want to insert some
documentation for yourself. '

EXAMPLE:
: This is the second segment of an exercise program
R: intended for students who performed below average
R: on the diagnostic test.
3.6 IMMEDIATE OPERATION

Whenever PILOT is awaiting input from the keyboard, whether in
response to an A statement, or at the PILOT restart point, the
user is able to submit a command of his own for immediate execu-

Section 3: Program development.

NEVADA PILOT . PAGE 18

tion. The format of such an "immediate command"” is important:
any statement within PILOT can be entered as a command, as long
as it is preceded by a backslash (\) and, where there is not
already a colon in the format of the statement, terminated by a
colon (:). For example,"\U:*LABEL" will cause immediate execu-
tion of the referenced subroutine; \LOAD: will cause a new pro-
gram to be loaded from the disk.

The interactive possibilities of PILOT can be greatly enhanced by
the use of these immediate commands. For example, there is the
option of letting the student specify a detour to the subroutine
of his choice, or of allowing him to calculate his own score on
an exercise, in order to determine whether to continue.

There are, however, times when the final user of a PILOT program
should not be allowed to make changes to the program, or to
change scores that might be collected. PILOT allows creation of
a special student version that does not allow access to EDIT mode
or to certain immediate commands.

After the execution of an immediate command, PILOT returns to the
A statement in reply to which the immediate command was entered
and awaits an answer. (The J and U commands entered for immed-
iate execution work slightly differently, in that the answer to
the last question must be supplied for the immediate command to
take effect. In the other cases, the user will be expected to
answer the last question only AFTER the execution of the immed-
iate command.) Exceptions to the rule of return to the A state-
ment are the \LOAD: and \GET: commands, whose execution oblit-
erates the program in memory, and \<cr>, which stops the current
program and returns PILOT to immediate mode.

When PILOT begins operation, it displays the message "READY". At
this point of control, which we will call "PILOT restart," a
number of commands may be entered for immediate operation without
an initial backslash (\) or a terminal colon (:). The immediate
command "?" will display their names as a reminder. They are:
LOAD, GET, RUN, DIR, BYE, INFO (available in both student and
author mode), and SAVE, CREATEF, KILLF, LIST, NEW, VNEW, SET,
EDIT (available in author mode only).

For example, at PILOT restart, typing RUN will cause program
execution to begin. Thus, if you have just entered a program in
the PILOT EDITor (see section 5), you will initiate the execution
of that program. Otherwise, you will execute the last program
stored (using LOAD or GET) in the program buffer (unless you left
PILOT in the meantime).

Section 3: Program development

NEVADA PILOT PAGE 19

SECTION 4
PILOT STATEMENT DESCRIPTIONS

4.1 STATEMENT SUMMARY

The following section describes each of the PILOT instructions
provided in this version of PILOT for the 8080 microprocessor.
The descriptions include format, function, and examples. Where
appropriate, error messages that might be generated by invalid
statements or invalid user response are described. In the exam-
ples below, the column marked "display" shows text and messages
IN THE ORDER THAT THEY APPEAR ON THE SCREEN. This order does
not necessarily correspond to the order of statements in the
PILOT program.

We have divided PILOT instructions into six categories, corre-
sponding, roughly, to the type of instruction or to the service
performed. The groupings are:

Sect. 4.2) Core instructions--those which perform all of the
most basic functions in PILOT (already discussed).

4.,3) Cursor and video control instructions-—those which
enable you to determine where text will appear on
the video screen,

4.4) Aids to conversation--those instructions which'
facilitate dialogue in PILOT by extending the
available core instructions,

4.5) 1Instructions that set various kinds of parameters

4.6) File manipulation instructions--those related to
storing and retrieving programs and data, and

4.7) Commands usually used in immediate mode from
PILOT restart. (They may actually be executed
from within a PILOT program, but might cause
complications if not used carefully.)

‘

Core instructions are limited to single letter codes. These
instructions are standard in format and operation for many diff-
erent implementations of PILOT. It is therefore advantageous to
use core instructions as much as possible, so that users of
other versions of PILOT may benefit from your work. Multi-
letter codes represent "keyword" instructions that have been
added to PILOT to meet special needs. When you use them, you
should keep in mind that they do not necessarily exist in all
other versions of PILOT.

Section 4.1: Statement summary.

NEVADA PILOT PAGE 20

4.2 CORE INSTRUCTIONS

These are tne statements that you will be using most frequently
in your PILOT programming. They let you type text on the video
screen, accept and analyze responses, and alter the order in
which statements are executed. There are a number of "keyword"
instructions, wnich are discussed in connection with with the
core instructions to which they are closely related. These are
TH:, RW:, and the variations on J: and M:. Remember that such
instructions do not share the standardization of normal core
instructions.

STATEMENT: TYPE (T:), YES (Y:), and NO (N:)
TYPE AND HANG (TH:)
TYPE TO PRINTER (TP:)

FORMAT:
[<label>] T [<cond>] : <message>
[<label>] Y [<cond>] : <message>
[<label>] N [<cond>] : <m2s.2ge>
[<label>] TH [<cond>] : <message>
[<label>] TP [<cond>] : <message>

- —— - = o G W S G GRS S M N N WS W G G S A W A D G e S G M T O S o A G G G —— D W G W - — - -

DESCRIPTION: Display a message to tne PILOT user. A message
consists of a character string that may include one or more
variable names. All character positions to the right of the
colon are reproduced literally except that the values of varia-
bles are inserted as replacements for their names. String varia-
ble names are a maximum of ten characters long and are preceded
by "$." Numeric variable names are one letter long and are
preceded by "#."

Sabacus is a string variable.
#a is a numeric variable.

The backward slash "\" immediately preceding "$" or "#" disables
their special function, causing them to be displayed. The "\"
itself does not print in this context.

In most cases it is not necessary to provide an explicit termina-
tor to a string variable name in order to produce appropriate
replacement of labeled text. There are, however, some instances
that require a terminator to avoid confusion, and the tilde ("™")
may be used for this purpose. It will neither print nor cause a
space in the output. Another use is to terminate blanks in a T
statement used to erase existing text.

Multiple "$" prefixes in string variable names cause an indirect
reference to the string variable. For example, "$$A" indicates
that "S$A" contains the string variable NA¥ME (the name of "A")
ratner than the string variable itself.

Section 4.2: Core instructions

NEVADA PILOT PAGE 21

YES (Y:) and NO (N:) statements are abbreviated forms of TY: and
TN: and are entirely equivalent in operation. It is acceptable
to use the arithmetic conditional with either of these forms.
For example, Y(X): will be executed on the condition that 1) the
last match was successful, AND 2) the value of X 1s positive.

The TH statement is like the T statement, except that the typing
position "hangs" after the message is displayed. The usual
progress to the next line is suppressed, so that the user's next
response 1is displayed immediately after the message on the
* screen, rather than on the next line. Thus,

TH: 6 + 7 = _
A:

allows the student to type his answer where it seems most natural
for the answer to appear. An underline may be used to position
the cursor to the right of the message.

The TP statement is the same as the T statement, except that the
message element is directed to the list device instead of to the
console. As one application, it has been successfully used for
operation of the Votrax "Type-N-Talk" device.

ERROR MESSAGES: Reference to a string variable that has not yet
been assigned a value will cause display of the string variable
name,including the "$." You may deliberately arrange for a
string variable name, rather than a value, to appear. If the
problem arises unexpectedly, it is usually caused by a misspell-
ing of the variable name. A numeric variable to which no value
has been assigned is displayed with a value of zero.

EXAMPLES:
(PILOT program) (display)

*START
T: Please tell me your name. Please tell me your name.
A:$SNAME (user enters "Alex")
T: Hi, $SNAME! Hi, Alex!

: How old are you? How old are you?
A:#a (user enters "8")
T:Is it fun to be #a ? Is it fun to be 8 ?

- -~ — - W D W A . . - W SN M G G W WD WP S W W G SIS TS L G SR D W S G M G SN W SWS G S ST S AW S - - — -

C:$NAME=MIKE
C:SMIKE=MICHAEL

T: $NAME MIKE
T:$SNAME MICHAEL
T:$$SNAME SMICHAEL

o —— - - — . W A S S A TEP W N A A AR MR WP SN G e S G G G L W G W D W W SR S G G S G SN G T S W W G NS R SR T W G S -

Section 4.2: Core instructions.

NEVADA PILOT PAGE 22

STATEMENT : ACCEPT AN ANSWER (A:)
ACCEPT AND HANG (AH:)
ACCEPT SINGLE CHARACTER (AS:)

FORMAT:
[<label>] A [<cond>] :
[<label>] A [<cond>] : $<string variable>
[<label>] A [<cond>] : $#<numeric variable>
[<label>] A [<cond>] : =<string variable>

[<label>] AH [<cond>]
[<label>] AS ([<cond>]:

- —— - - E M - —— — ——— - U W — " T U O G ———— ————— —— -

DESCRIPTION: Makes it possible for the user to communicate with
PILOT from the keyboard. While entering a response, the user may
cancel the last character entered by depressing the DELete Kkey or
the backspace key, and cancel the current line by depressing
ctrl-X. ("t" is displayed on the screen whenever ctrl-X is
used.) A carriage return signals the termination of a line. 1If
the line being entered exceeds the maximum length allowed for a
response (i.e., if the present or default value of the parameter
INMAX is exceeded), PILOT supplies its own carriage return and
regards the line as terminated.

If there is nothing to the right of the colon in an A statement,
the response will be retained in a special "accept buffer," so
that it may be considered by subsequent Match and WRite commands
(see later).

If a variable name is used, then the response will be stored as a
value for that variable.

If an "=" operator is present, then the contents of the string
variable to the right of the "=" will be assigned to the accept
buffer, rather than the normal input from the keyboard.

If a numeric variable name is included and a non-numeric response
is entered, an error message will be displayed and another re-
sponse will be accepted.

The AH statement is like the A statement, except that the typing
position "hangs" after the response is displayed. For example, a
following T statement will appear on the same line after the
user's response, rather on the next line.

The AS statement accepts a single character from the keyboard and
proceeds without waiting for "RETURN" to pbe pressed.

LIMITATIONS: The length of a response is limited to 80 characters
or to a lower limit set by the keyword statement INMAX. (The
ormat of the INMAX statement is given in Section 4.5.) PILOT. A
numeric variable response must be an integer between -32768 and
32767.

Section 4.2: Core instructions.

NEVADA PILOT PAGE 23

ERROR MESSAGES: "*NUMERIC RESPONSE REQUIRED" occurs if a non-
numeric entry is attempted in response to a command requesting a
value for a numeric variable. The user is expected to enter
another response.

"*NO ROOM" indicates that the area available in memory for string
variable storage has been exhausted. (See discussion of VNEWS
for some ideas about how to cope with this problem.)

_EXAMPLE:
(PILOT program) (display)
T:WHO ARE YOU? WHO ARE YOU?
Az (user enters "your son")
T:WHAT IS YOUR NAME? WHAT IS YOUR NAME?
A: SNAME (user enters "Timothy")
T:WHAT IS YOUR AGE? WHAT IS YOUR AGE?
A:#A (user enters "10")

- - - - — N —— - G - - — - . - — - > - W — - —— - — —— - ———— —-—

Section 4.2: Core instructions.

NEVADA PILOT PAGE 24

STATEMENT : MATCH (M:)
MATCH JUMP (MJ:)

- — W A —— - o W G G S W D G N S R G N G G- G- G G G W WD SR S WA S R G G S ———— . ———————— -

[<label>] M [<cond>] : <pattern>[,<pattern>...,<pattern>]
[<label>] MJ [<cond>] : <pattern>[,<pattern>...,<pattern>]

- - - G G S Wwe M W W G —— I G W W S T W G P G IS G - € W - - W S > WS G W . W G S G G - -

DESCRIPTION: The response received by the last A statement is
scanned for occurrences of ANY of the character patterns that
follow the colon in the Match statement. If the response is
found to contain one or more such strings, a subsequent statement
including a Y condition will be executed. 1In this form of the M
statement, commas are used to separate patterns in the list, with
blanks considered part of the pattern (except those following the
last item. (Any response is regarded as as though it begins with
a blank, however, so that the statement M: YES will match a "yes"
response to the previous question, whether or not the user pre-
ceded the response with a blank.) If you want to specify a pat-
tern ending with a blank as the last pattern in your list, follow
that pattern with a comma, as in the third example below. Con-
tiguous blanks are reduced to one. For example, the pattern
"M r." will match with "M r." "Mr." will match with neither
"M r." nor "M r.", however. Here is a more technical descrip-
tion of how the Match statement operates:

1. Each pattern in the M statement has multiple blanks
reduced to one.

2. The user's last response has a blank added to each
end.

3. The user's last response has multiple blanks reduced
to one.

4. A moving window scan of the response is made with
each pattern, until either a match is found or the
input is exhausted. Upper/lower case is ignored.

If the first character after the colon is a vertical bar ("|"),
then that character will be the field separator for the match
list, instead of a comma. If the first character after the colon
is anything other than a vertical bar, then the field separator
will be a comma.

The question mark ("?") in an M-item will match any single char-
acter (or no character) in that position, and the asterisk ("*")
will match any number of characters in that position. Placing
"\" immediately preceding "?" or "*" allows a search for those
characters.)

Three string variables are produced as a result of a successful

match. S$SLEFT contains as its contents everything to the left of
the matched data, SMATCH contains the matched data, and SRIGHT

Section 4.2: Core instructions

NEVADA PILOT PAGE 25

contains everything to the right of the matched data. They may
be used like other string variables. If the match was unsuccess-
ful, the three variables are left with their prior contents.

The MATCH JUMP statement (MJ:) causes a jump to the next M, MC,
or MJ statement if the present attempt to match a response is
unsuccessful. Look at the example in the discussion of the Jump
statement MJ: YES would be exactly equivalent in execution to M:
YES followed by JIN:@8M (see under JUMP, p. 4-~9.)

EXAMPLES:

- . - —— — - - —— - ——— . — - T I W D . - N D W G - — — ———————— - ——-—

M:A,B,C
Matches A or B or HAT or ALICE or JOB
Does not match TENT or X

M: A, B, C
Matches A or B or ALICE
Does not match JOB or HAT

M: A ,B, C,
Matches only A or B or C

- — - . T S WS G N G D W W S D W T - - - G . - - - - T - - —

T:PLEASE TYPE A TEST SENTENCE
User types: "HERE IS A TEST SENTENCE."
M: WAS , IS , WERE ,
The contents of SLEFT "HERE"

" $MATCH = " Is "
" $RIGHT = "A TEST SENTENCE."

- - - - T . - —— W G - W D W D I R W W D G G W G . - -

Section 4.2: Core instructions.

NEVADA PILOT PAGE 26

STATEMENT : JUMP (J:)
JUMP ACCORDING TO MATCH (JM:)

FORMAT:

[<label>] J [<cond>] : [*] <destination label>

[<label>] J |[<cond>] : &M

[<label>] J [<cond>] : €P

[<label>] J [<cond>] : €A

[<label>] JM: [<cond>] : [*])<labell>,[*]<label2>,...

DESCRIPTION: Causes a jump to the specified destination in the
current program. The most common form of the statement is that
which results in a jump to a particular label. (The asterisk is
optional.)

The next two forms of the statement, illustrated above, cause a
jump to the next Match statement (M, MJ, MC), or PR statement,
respectively. The PR statement is described in section 4.4. 1In
general, it serves only as a destination for a J or U statement.

In case it is not immediately evident why one would want to use
the alternative forms, let us consider an example. The student
has just finished reading a passage about color and color group-
ings. As a test of his comprehension, we ask him to name a warm
primary color. We want to give him an opportunity to review any
material that he does not seem to understand. Thus we want not
only to check whether his answer is correct, but to determine in
what respect his answer is incorrect, and proceed accordingly.
He need not be asked to review what he already understands.
Using the different forms of the Jump instruction, we can gener-
ate the code in the example below.

The J:@A statement will jump back to the last A statement without
the necessity of that statement having a label. It will most
often be used in a sequence such as '

A:

M:iteml,item2

TN:No, that's not right. Try again.
JN: @A

The Jump according to Match statement (MJ:) jumps to one of a
list of labels according to which in the last preceding list of
M-items was matched. If the third M-item was matched, then the
jump is to the third label. 1If no item is matched, then there is
no jump.

The Match Jump statement (MJ:) provides a shorthand for the

sequence of Match (M:) followed by JN:@M. The format is shown
under our description of the Match statement. (M:).

Section 4.2: Core instructions.

NEVADA PILOT PAGE 27

If the use of the J statement creates an endless loop, remember
that "\" (Return) may be typed at .any A statement to return to
immediate mode. If the loop does not contain an A statement,
pressing the ESC key will provide an exit to immediate mode.

ERROR MESSAGES: The designation for a destination that can not be
found will be displayed, followed by:

"-NOT FOUND"

EXAMPLE:

(PILOT program) (display)

T: Name a warm primary color. Name a warm primary color.
*TEST1 A:S$color (user enters "green")

M: red,yellow,blue (match not found)

JY:eM

T:Scolor is not a primary color; Green is not a primary color;
:Let's review the primary colors. Let's review the primary

LI K Y ® o e

: Now name a primary color. Now name a primary color.
J:*TEST1 (user enters "blue")
M:blue
JN:@P
T: Scolor is not a warm color; Blue is not a warm color;
:Let's review the warm and cool Let's review the warm.....
scolors.

PR:

- —— . - - — W - —- — ——— - - — - ———— =~ ———— - ——— - — o—

Section 4.2: Core instructions.

NEVADA PILOT PAGE 28

STATEMENT: USE SUBROUTINE (U:)

t<label>] U [<cond>] : [*]<destination label>
[<label>] U [<cond>] : @M
[<label>] U [<cond>] : @P

DESCRIPTION: Causes a jump to a specified subroutine in the
current program, and returns control, after the execution of
that subroutine, to the statement following the Use instruction.

The end of a subroutine is marked by an End (E:) statement; the
beginning of a subroutine is indicated by the label or instruc-
tion to the right of the colon in the Use statement.

Usually, the destination of this kind of jump is a label (which
begins with an asterisk). The other possible destinations are @M
and @P, just as in the J statement.

If you neglect to mark the end of a subroutine, the next End
statement in your program will be regarded as the subroutine
terminator. If the next End statement is the final statement in
your program, control will return to the statement following the
Use. Therefore, it is a good idea to be careful about marking
subroutines, and to check for this kind of error when you find
that some unlikely portion of your program is being repeated.
(Consider what must happen if your U statement occurs between the
desired subroutine and the next E statement in your program: the
calling statement will be encountered AS PART OF THE SUBROUTINE,
and will continually reinitiate the execution of that subrou-
tinel!)

LIMITATIONS: A subroutine may be used within another subroutine
with the limitation that no more than seven Use statements may
be pending at once. (The example shown for the E statement has a
maximum of three Use statements pending at any particular point
in the program.)

ERROR MESSAGES: The name of a nonexistent destination will be
displayed, followed by:

"-NOT FOUND"

I1f too many subroutines are pending, you will receive the
message:

"*USE DEPTH EXCEEDED"
If a subroutine is being re-executed within itself because the

programmer failed to include a subroutine terminator (see above),
the Use depth will eventually be exceeded.

Section 4.2: Core instructions.

NEVADA PILOT PAGE 29

EXAMPLE:

S - — ——— . - ——— . ——_—— - —— - - - - - - - ———— — - ————

(PILOT program) (display)

*START T:THIS IS WHERE WE START. THIS IS WHERE WE START.
T:DO YOU NEED INSTRUCTIONS? DO YOU NEED INSTRUCTIONS?
Az (user enters "yes")
M: YES (match found)
UY:*INSTR (use subroutine INSTR)

LI

® o 000

*INSTR
T:THIS IS WHAT YOU NEED TO KNOW

® e o o0

THIS IS WHAT YOU NEED TO KNOW

E: (return from subroutine)

T —_—— T~ —————— - - —— - ——— - - —— — -} S . . - — = = - —— - - _—— -

Section 4.2: Core instructions.

NEVADA PILOT PAGE 30

STATEMENT: END OF SUBROUTINE OR PROGRAM (E:)

DESCRIPTION: Indicates the end of a subroutine or the end of the
current program. The first E statement encountered during the
execution of a subroutine will be regarded as the end of that
subroutine, and will return control to the statement following
the calling (Use) statement for that subroutine. If an End state-
ment is encountered with no Use statement pending, control is
returned to PILOT restart.

Upon termination of the PILOT program, a data collection file
left open will be closed.

LIMITATIONS: A maximum of seven subroutines may be be in execu-
tion at a given point in a PILOT program. See the error message
in connection with the Use statement.

EXAMPLE:
(PILOT program) (display)
*START U:*FIRST
T: TIME NOW
*END E: IS
*FIRST U:*SECOND THE
T: THE TIME
E:
*SECOND U:*THIRD
T: IS
E:

*THIRD T: NOW

Section 4.2: Core instructions.

NEVADA PILOT PAGE 31

STATEMENT: COMPUTE (C:)

FORMAT:
[<label>] C [<cond>] : <num variable> = <num expression>
[<label>] C [<cond>] : <str variable> = <text expression>

- ————— - — - . > - - ——— - - . - - . W WS S W W A — - . —

DESCRIPTION: Assigns the value of a numeric expression to a
numeric variable or assigns the value of a text expression to a
-string variable. The expression to the left of the equals sign
must be either a numeric variable name or a string variable name.

If it is a numeric variable name, the initial "#" is optional. It
may or may not be a variable to which a value has already been
assigned in the PILOT program. (If there has been no such ass-
ignment in your program, the initial value is zero.) The expres-
sion to the right of the equals sign can consist of numbers,
numeric variables (# optional) and operators (see below).

If it is a string variable name, the initial "$" is required.
The expression on the right of the equals sign can consist of any
combination of text, string variable names, and numeric variable
names that will cause replacement of values in place of names as
in the T statement.

ARITHMETIC OPERATORS

The arithmetic operators in PILOT are + (add), - (subtract), *
(multiply), / (divide) and % (return the remainder of a divis-
ion). There are some general rules to remember when you use
these operators:

1) 1In PILOT there are no fractions or decimals. All numbers
containing fractions or decimals are truncated to their
integer part. 4 divided by 5 is zero, -10 divided by 3 is
-'30

2) The % operation returns only the remainder of a division.
If you wanted to execute a certain statement on condition
that n be an odd number, you could write:

C: A= n ¢ 2
T(A):#n is an odd number.

because if n is odd, the remainder of the division of n by
2 will be greater than zero.

Section 4.2: Core instructions.

NEVADA PILOT PAGE 32

3) The order of operations is very important. 1In a numeric
expression containing multiple operations:

a) The unary negative (that which reverses the sign of a
number by negating it, as in the expressions -A and -15) is
evaluated first.

b) Anything in parentheses is evaluated second. Within
parentheses, the normal order of operations applies.

c) Multiplication, division, and the return-remainder
operation are evaluated third.

d) Addition and subtraction are evaluated last.

In the absence of parentheses, operations of the same rank
are performed from left to right. For example, 2*2/3
yields the result 1, not 0.

4) Neither the result of a computation nor any of its elements
may be outside the acceptable range of integers -32768 to
32767; and attempt to store too high or too low a value
will result in an error message and the assignment of a
value of -32768 or 32767 (whichever is closer to the number
indicated). For example, the statement

C: B = -n%3

will generate an error message if n is an expression that
evaluates to -32768 (because 32768 is outside the
acceptable range).

LOGICAL AND RELATIONAL OPERATORS

In addition to the arithmetic operators, PILOT allows the use of
logical and relational operators in expressions. The result of a
logical or relational operation is 1 if the condition is true, 0
if the condition is false. The logical and relational operators
are:

\ (not)

This operation results in a value of 1 if the operand is equal to
zero, 0 if the operand is not equal to zero. For example, the
value of \6 is 0; the value of \0 is 1.

& (and)
This operation results in a value of 1 if both operands are non-
zero, 0 if either or both operands equal zero. For example, the

value of -3&20 is 1, because both operands are non-zero; the
value of 0&14 is 0, because one of the operands is eqgual to 0.

Section 4.2: Core instructions.

NEVADA PILOT PAGE 33

! (or)

This operation results in a value of 1 if either operand is non-
zero, 0 if both operands are equal to zero. For example, the
value of 26!0 is 1; the value of A!Q0 is 0, if A is equal to zero.

= (equal to)

This operation results in a value of 1 if the operands are equal,
.0 if they are not equal. For example, the value of 3+2=5 is 1;
the value of 3+2=6 is 0.

<> (not egual to)

This operation results in a value of 1 if the operands are un-
equal, 0 if they are equal. For example, the value of 3+2<>5 is
0; the value of 3+2<>6 is 1.

< (less than)

This operation results in a value of 1 if the first operand is
less than the second, 0 if the first operand is greater than or
equal to the second. For example, the value of 14<7+8 is 1; the
value of 382<5 is 0.

<= (less than or equal to)

This operation results in a value of 1 if the first operand is
less than or equal to the second, 0 if the first operand is
greater than the second. For example, the value of 3<=10 is 1;
the value of -1<=-8 is 0.

> (greater than)

This operation results in a value of 1 if the first operand is
greater than the second, 0 if the first operand is less than or
equal to the second. For example, the value of 28>-28 is 1; the
value of 6/4>6/3 is 0.

>= (greater than or equal to)

This operation results in a value of 1 if the first operand is
greater than or equal to the second, 0 if the first operand is
less than the second. For example, the value 5>=4+1 is 1l; the
value of 63>=32000 is 0.

Logical and relational operators are used primarily for condi-
tional expressions. For example, if you write either

U (A>6): *STEP1 or C: B=A>6
U (B): *STEPl

STEP1l will be executed only if A is greater than 6.

Section 4.2: Core instructions,

NEVADA PILOT PAGE 34

If an expression contains both arithmetic operators and logical
or relational operators, the full order of precedence is as
follows (operators on the same line have equal rank):

nary + - Operators of equal rank are
/ % evaluated left to right.

RANDOM NUMBER FUNCTION

The expression RND(n) represents a random number in the range 1
ton, with n having a maximum value of 32767.

LIMITATIONS: The expression to the left of the equals sign must
be a numeric variable name, with the § omitted; it may or may not
be a variable to which a value has already been assigned in the
PILOT program. (If there has been no previous assignment within
your program, the initial value is zero.) Neither the result of a
computation, nor any of its elements, may be outside the accept-
able range of integers -32678 to 32767: an attempt to store too
high or too low a value will result in the assignment of -32768
or 32767, (whichever is closer to the number indicated).

ERROR MESSAGES: An offending expression is displayed, followed by
the message:

"*CANNOT EVALUATE THE EXPRESSION"
or

"*VALUE OUT OF RANGE (-32768 TO 32767)"

An inability to evaluate the expression can occur as a result of
bad format or in response to an illegal numeric variable name.
After the message is displayed, PILOT awaits an entry from the
keyboard. If <cr> is entered, execution proceeds with the next
PILOT line. (You can alternatively supply an immediate command.)

The second message occurs if there is an attempt to set a value
that is either too high or too low to be acceptable in PILOT (not
between -32768 and 32767).

EXAMPLES:
(PILOT program) (display)
C: x=(a+b)* (b-c) (computations are made)

C: g=(RND(n)+a) %10

————————————— - - —— —— - - — N —— - ——— - ————————— - —————— — - —————— -~

Section 4.2: Core instructions

NEVADA PILOT PAGE 35

STATEMENT : REMARK (R:)
REMARK WRITE (RW:)

FORMAT:

[<label>] R [<cond>] : <text>
[<label>] RW [<cond>] : <file number expression> <text>

- ——————— - - —— -~ - — - — - - —— - ——— - - — - ————

_ DESCRIPTION: The Remark statement is a way of including useful
descriptive information in the program listing without any effect
on operation of the program. A Remark may be placed at any point
in a PILOT program.

How easy was it to read the code given in relation to the Jump
statement? Does the insertion of R statements make any differ-
ence? .

EXAMPLE:

- — - ——— - ——— G ———————— - - - - . - W A — N - -~ ———

(PILOT program) (display)

R:Test on Color (Same as for code in Jump section)
T:
:Name a warm primary color.
*TEST1
A:$color
R:Is S$color primary?
M:red,yellow,blue
R:If student named a primary color, jump to the next test.
JY:8M
R:If control reaches this point, $color is not primary.
R: Review lesson.
T:Scolor is not a primary color;let's review primary colors.
:Now name a primary color.
R:Repeat the first test.
J:*TEST1 .
R:The color is primary. Test for warm or cool.
*TEST?2
M: blue
R: If there is no match, then the student has named a warm
R: primary color. Proceed to the next problem.
JN:@P
R: $Scolor is not warm. Review lesson.
T:Scolor is not a warm color;let's review warm and cool colors.
PR:

Section 4.2: Core instructions.

NEVADA PILOT PAGE 36

There are only two differences between this program and the
earlier version of it. The differences are l)that the second
version might be a bit easier to read, and 2)that the second is
somewhat longer than the first. Both of these factors must be
taken into consideration when you write a program. In the exam-
ple above, we have probably incorporated more comments than are
really necessary. A user who already knows PILOT will not need
very many of these. It is also important not to clutter a prog-
ram with unnecessary material, because the length of a program is
limited by the capacity of the computer. Every character of
Remark, although PILOT will not act on it in any way, coatributes
to the length of the program.

The RW statement is a Remark statement that writes remarks on a
file. The RW statement is similar to the T statement, in that it
involves a string of text, with substitution of current values
for any string or numeric variables included in the text. The
major difference is that whereas the T statement types text on
the screen, the RW statement writes text into an opened data
collection file on disk.

Section 4.2: Core instructions.

NEVADA PILOT ' PAGE 37

4.3 CURSOR AND VIDEO CONTROL INSTRUCTIONS

These instructions control the presentation of text on the video
display. Recall the following two concepts introduced in Section
1.5: '

1) The cursor marks the current position on the screen,
and,

2) The screen may be divided into horizontal rows and
vertical columns.

The position of the cursor on the video screen is called its
"address."

The cursor control statements are:

STATEMENT: CURSOR ADDRESS (CA:r,c)
CLEAR AND HOME (CH:)
CLEAR TO END OF LINE (CL:)
CLEAR TO END OF SCREEN (CE:)

FORMAT:

[<label>] CA [<cond>] : [<row>] {[,<col>]

[<label>] CH {[<cond>] :

[<label>] CL [<cond>] :
[<label>] CE ([<cond>] :

- - —n - — - - A W G MU G M D I W e SN G G G S S G G A WS D WS GEN R R GGR S D GEN WIS G W M G G GEY G A G G G S M G - -

DESCRIPTIONS: For the purpose of these commands, the first
row on the screen is designated row 1, and the first column
is designated column 1.

CA: sets the cursor address by row and column at which the next
text is displayed or the next input is accepted. The row and
column may be indicated by either an integer constant or a numer-
ic variable name. If column indication is omitted, it is set to
1, and if row is omitted, it is set to the last used row + l. To
omit the row designation, follow the colon with a comma and your
desired column number. A statement of the form CA:6 moves the
cursor to row 6, column l; a statement of the form CA:,6 moves
the cursor down one line, and positions it at the sixth column of
that line.

CH: clears the screen and sets cursor address to row 1 and column
l [] .

CL: clears from the current cursor position to the end of the
current line. The cursor address is not changed.

CE: clears from the current cursor position to the end of the
screen. The cursor address is not changed.

Section 4.3 Cursor and video control instructions.

NEVADA PILOT

PAGE 38

EXAMPLES:
(PILOT program) (display)
CA:2,n (causes the next text to begin in the nth
column of the second row on the screen)
CA:,b6 (causes the next text to begin in the

sixth column of the next row on the

screen.)

- ———_— - - - —— - — - ———— - — - ——— A N S - -

NOTE:

None of these "cursor control" statements make the

cursor appear as a character on the display

screen. Outside of the the PILOT editor (section
5), it is probably best to consider the cursor as
a position, ratner than as a visible marker of

that position.

In addition to providing control of the cursor address and
making it possible to clear all or portions of the screen,

PILOT provides an easy way to emphasize portions of text with
reverse video (reversal of black and white in the display).

The TH statement allows the user's next keyboard entry to

appear immediately following the given line of text, instead of

on the next line. There is an example in Section 4.1,
the T and TH statements are described.

Section 4.3 Cursor and video control instructions.

where

NEVADA PILOT PAGE 39

STATEMENT: ROLL SCREEN (RL:n)

FORMAT:

[<label>] RL [<cond>] : <expression>

DESCRIPTION: Causes screen contents to roll, or scroll, upward a
specified number of lines. The expression indicates the desired
number of lines. It may be an integer constant, a numeric varia-
ble name, or an expression that will evaluate to an integer
value. If no value is given, the screen is rolled one line.

With each roll, the contents of the top line are lost, and a
blank line appears at the bottom of the screen.

The RL statement is occasionally useful to retain information

presented in the lower portion of the screen while opening an
area to present new information or a gquestion.

EXAMPLE:
(PILOT program) (display)
RL:8 , (results in an 8-line upward roll)

- . G - G G S T e Swe W ANS W W GIE W T T WA U NS WS SN W G WS SN W A W G —— - - - - -

Section 4.3 Cursor and video control instructions.

NEVADA PILOT PAGE 40

4.4 AIDS TO CONVERSATION

There are a number of PILOT statements that make it easier to
converse within the PILOT system. They are FOOT, PAUSE, VNEW,
PR, CALL, XI, and XS.

STATEMENT : FOOT OF SCREEN HALT AND PROMPT (FOOT:)

- —— G G T W Y S A SN G G M W S WS S W W SN N GER I G G W D G TN R IS G D S G, VS G WU AN WS N GED S G G —— - -

- - AT D . W A W N . G S GE SEe G S S MR S G WS G G W WD W W GER NN W G W I A T G G G W WS S S ST SN WP G G G N S G ——— - -

DESCRIPTION: Causes the text provided after the colon to appear
on the bottom line of the screen and executes an A statement. If
there is no text after the colon, the message is:

'PRESS "RETURN" TO GO ON..'

Execution will resume when the user hits the RETURN key. (Even
if the message is not "PRESS RETURN TO GO ON.")

When we thought about writing the reading exercise program, two
of the problems were how much text could be displayed on the
screen at once, and how to give the student enough time to read
it. We decided to display a screenful of text and then ask a
question at the bottom of the screen. FOOT is a convenient com-

bination of three commands:

CA:16 (number of the last line on screen)
T: <text>
A:

A possible reason to use FOOT, as opposed to the three other
statements, 1is that FOOT takes up less space in the program
buffer; a disadvantage is that FOOT is not included in all vers-
ions of PILOT.

EXAMPLE:
(PILOT program) (display)
T:Now we'll go on ... Now we'll go on...
FOOT: PRESS "RETURN" TO GO ON
(at last line position)
T:NEXT QUESTION: (user enters <cr>)
cssecoans NEXT QUESTION

- o - - - ——— - S G W - A W - W —— - — - - —— —— - — - -~

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 41

STATEMENT : PAUSE (PAUSE: or PA:)

FORMAT:
[<label>] PAUSE [<cond>] : [<expression>]
[<label>] PA [<cond>] : [<expression>]

DESCRIPTION: Causes program operation to halt for a specified
_length of time, 1 to 99 seconds. The optional expression indi-
cates the desired time. It may be an integer constant, a numeric
variable name, or an expression that will evaluate to an integer
value. If no time is given, the wait is approximately one sec-
ond. (The figures given are for a 2 mh. 8080 Computer. Computers
with higher speed processors will need an adjustment to the pause
timing factor PATIM listed in the NVPILOT.PRN file).

The PAUSE statement permits you to regulate the amount of time a
student has to study text on the video screen. This feature of
PILOT has an obvious application to timed exercises of various
kinds. Consider how you could change the reading exercise prog-
ram, if you did not want to give the student unlimited time to
study each screenful of material.

EXAMPLE:
(PILOT program) . (display)
PAUSE:3 (results in a 3 second pause)

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 42

STATEMENT: NEW VARIABLES (VNEW:$, VNEW:#, or VNEW:)

FORMAT:

[<label>] VNEW [<cond>] :
[<label>] VNEW [<cond>] :
[<label>] VNEW [<cond>] :
VNEW (at PILOT restart)

- ————— N ——— - - W S - = - - - —— - G - . T S G W G - W W -

DESCRIPTION: The VNEW:$ statement clears all string variables
defined earlier in the program, and thereby reclaims the storage
space that these occupied. You can use the VNEW:$ statement to
avoid cluttering the program buffer with unnecessary data when-
ever you have accumulated a lot of variables no longer in use.

One of the most important conversational features of PILOT is the
ability to retain a user's response, so that it can be retrieved
later in the program. The VNEW:$ statement lets the programmer
deal with potential problems caused by the limited storage capa-
city of the computer.

The VNEW:# statement resets the value of all numeric variables to
zero. Note that the space-consuming problem of string variables
does not apply to numeric variables. Each value assigned to a
numeric variable actually replaces tne old one, so that there are
always 26 numeric variables, corresponding to the letters of the
alphabet, stored in the memory of the computer. Each of these
numeric variables always has a value (assumed to be zero where no
other has been assigned) and none of them are stored with the
program in the program buffer area. Because of these distinc-
tions, there is no storage problem with numeric variables. Such
values are initialized, i.e., set to zero, rather than actually
cleared from memory, in response to a VNEW:# , VNEW:, or NEW
command.

As you may have guessed, VNEW: (without $ or # after the colon),
clears both string variables and numeric variables. NEW is used
in immediate mode to return PILOT to its initial startup condi-
tion. NEW 1is discussed in Section 4.7, below.

EXAMPLE:

(PILOT program) (display)
T:GIVE YOUR ANSWER NOW. GIVE YOUR ANSWER NOW.
*ANSWER A:S$TEXT (user enters "jhgblj")
M :PATTERN (match not found)
N:SOMETHING'S WRONG. SOMETHING'S WRONG.
N:PLEASE TRY THAT AGAIN. PLEASE TRY THAT AGAIN.

VNEWN:$ co e
JN:*ANSWER ceee
T:FINE, LET'S GO ON. FINE, LET'S GO ON.

- ——— - ———— - - - - - — - — - - ——-— ——— —u W i G G . W WS W G . = = — ————

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 43

STATEMENT : PROBLEM START (PR:)

- ———————— " - - > - ————— - — - — G - ———— - - — A W . . - - —-——— — - ——

T D . - - . > G - - -—— - - — - G W . ———— - . UL W W - — - ———— - - — - —

DESCRIPTION: Provides a destination for the J:@P or U:@P
command.

The PR: statement is very much like a label, in that it initiates
no activity but functions as a landmark to be considered by other
operations. It can also have the mnemonic advantages of a label,
insofar as it can designate the beginning of the next exercise,
set of questions, or general phase of a program. There are two
reasons that you might decide to use a PR statement, rather than
a label:

1) Unless you use labels only two characters long,
PR: statements are shorter.

2) By using PR: to signify the beginning of a new
section or procedure, you can avoid cluttering
your program with a lot of extra labels that
don't have very much significance. (You might want
to label every SET of questions, but you probably
would not want to label every guestion.) Using
too many labels can be as confusing as using none.

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 44

STATEMENT: CALL PROGRAM ELSEWHERE IN
MEMORY {CALL:)

FORMAT:

PR ————————— S A R e ettt bRl

DESCRIPTION: Calls the assembly language routine whose address in
memory is indicated by the first parameter following the colon,
and stores an arqgqument, if one is given, in registers D and E.
The address must be a decimal number; the argument must be a
number greater than -32768 and less than 32767. This statement
permits you to call an assembly language program that you have
stored in memory outside the PILOT program buffer. If the assem-
bly language program includes a RETurn instruction, control will
return to the PILOT program statement which immediately follows
the CALL.

EXAMPLE:
(PILOT program) (function)
CALL: 16385,-25 (executes a program at

address 16385 and puts
a value of =25 into
registers D and E)

——————— - - I T G WS S W W W N WM WA MR G T G L G S GSS S W W G L G MR GE GE G W R S G - S - -

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 45

STATEMENT : EXECUTE IMMEDIATE (XI:)

FORMAT:

. ——————— - -~ - — - ————————_— W - —— - " CES W R W U WD - — —————— -

- - - - ————— — - SW" S . - —— - - " ————— — - - — -

DESCRIPTION: Causes immediate execution of the contents of the
string variable as a PILOT statement.

You can make use of an A statement or a C statement to assign
contents to the string variable.

EXAMPLE:
T:Type the name of the lesson you want.
A:SLESSON
C:$FILE = LOAD:$LESSON
XI:$SFILE

- ——— — - W S Wae N G N G GEM W WS G S A G ANR I M NN GEE G3 G A G AN S GNP GED S M W W SHS GNS N G GEM M W D G . - -

Section 4.4: Aids to conversation.

NEVADA PILOT PAGE 46

STATEMENT : EXECUTE SYSTEM (XS:)

FORMAT :

- W, A - - - - —— A - - - - —— — - - - - —— - - — - —— -

DESCRIPTION: Allows exit from PILOT with overlay and execution
of a CP/M command file. The information to the right of the
colon can contain any legal input to the CP/M console command
processor.

EXAMPLE:

- ———— — — —— — ——— - - - - — - . T W . - —— = VS W - . - — ——— - —— -

T: Now that you understand what to do, we will use DDT to
: look inside the test program.)
X5: DDT TESTPROG.COM

. ———————_—— - - — ————— — ———— — —— Wi - - —— - — - — - —_—————_— - — —— - — - -

“Section 4.4: Aids to conversation

NEVADA PILOT PAGE 47

4.5 SET PARAMETERS

The statements described in this section specify the way in
which PILOT will accept input and present output.

STATEMENT: SET PARAMETERS (SET:)

FORMAT:
[<label>] SET [<cond>] : S=n
[<label>] SET [<cond>] : M=n
[<label>] SET [<cond>] : P=n
SET S=n (etc.) (at PILOT restart)

-t W - — - — > S WS . T N S= G . — - - o A - - —— Y W W - —— - ——— - —— — - —

DESCRIPTION: Sets the parameters of display speed, memory set-
ting, or print echo either during the execution of a PILOT pro-
gram or as a direct action at PILOT restart.

SET S=n sets display speed of the screen, where n determines the
speed with 0 fastest and 9 slowest. You don't have to set this
parameter unless you are dissatisfied with the default display
speed.

SET M=n determines the upper limit of the program buffer. The
greater the value of M, the larger your programs and text files
can be. When PILOT is initialized, the buffer is as large as it
can be. You need to use SET only if you want to make the buffer
smaller.

Any program or text that is stored in the program buffer at the
time of this command is lost, so it is a good idea to change this
parameter either before the intended file is put into the buffer,
or after it has been saved.

M must be a decimal number that points to a mamory location LOWER
than the lowest memory location used by the disk operating system
in use. Remember that the number you specify in the PILOT SET
command must be in base 10. :

The greatest value possible for M is 32767 Decimal, or 7FFF
Hexadecimal. If you want to set an upper bound higher than 7FFF,
use the following formula: to set a limit of n, assign to M a
value of =-(65536-n). Thus, to set an upper bound of 33023 (80FF),
enter SET:M=-32511.

SET P=n allows an echo of screen display to be sent to the CP/M
list device. It will be normally used to collect a print of user
interaction. SET P=1 turns printing on, SET P=0 turns it off.

EXAMPLE:

SET: S=5
SET: P=1

W ————— - —— . - " - S, S . . ——————— - ——— - — -

Section 4.5: Set parameters

NEVADA PILOT PAGE 48

STATEMENT : INPUT MAXIMUM NUMBER OF CHARACTERS (INMAX:)

[<label>] INMAX [<cond>] : <integer>
[<label>] INMAX [<cond>] : <numeric variable>

DESCRIPTION: Limits the number of characters to be considered by
subsequent A statements. The limit must be expressed as either an
integer (1-80) or a numeric variable name, and must appear immed-
iately to the right of the colon. (The maximum number of charac-
ters includes blanks; e.g., the strings "123 123" and "1231231"
are both seven characters long. The maximum number does NOT
include the carriage return.)

If the user supplies the maximum number of characters, PILOT will
add its own carriage return, and regard the response given as
complete. Any additional text that the user types will be disre-
garded. (It will not even be visible on the screen.) If INMAX is
set tol, for instance, PILOT will react immediately to the first
character entered, without the user's having to press the car-
riage return key. Of course, if the user gives a carriage return
before the character limit is reached, the response is regarded
as complete at that point.

LIMITATIONS: INMAX values should be set between 1 and 80. If you
do not set INMAX, PILOT allows a length corresponding to the
width of the video screen. A greater value causes a harmless
overflow to the next line on the screen. INMAX may be set and
altered any number of times during a PILOT program.

The entry of an immediate command will temporarily override
INMAX; upon return to program execution, the former value of
INMAX will be restored.

EXAMPLE:
(PILOT program) (display)
T:Enter a five digit number. Enter a five digit number.
INMAX:5 (User enters 123456.)
A:§N 12345
T:Thank you. Thank you.
T:You entered #N. You entered 12345.

- - -~ - —————— - - — - - —— - - ———— ———— — ———————— - =

Section 4.5: Set parameters.

NEVADA PILOT PAGE 49

4.6 FILE MANIPULATION INSTRUCTIONS

The statements described in this section let you collect, store,
and retrieve information in files. (The definition and a few of
the characteristics of a file are discussed in Section 1l.4.) 1In
general, you will be writing files to serve the following pur-
poses:

1) to save a program or data that you have just entered or
altered using EDIT, or

2) to make a record of data accumulated during the execution of
a PILOT program.

Every time you LOAD or GET a program from the disk, you are
reading a file.

In the case of CP/M, program files are in a standard CP/M format,
with file type "PLT". Before you use a brand new disk, you will
have to "format" the disk using a CP/M utility program.

Every file must have a name, and no two files on the same disk-
ette may have the same name. A file name consists of 1 to 8
characters. In CP/M, the following characters must be avoided:

space

less than
greater than
period

comma
semicolon
colon

equals
question mark
asterisk

left bracket
right bracket

vV A

bt ey W) | e Se & e

I1f there is more than one disk in your system, there may be a
prefix to indicate which disk drive is being referenced.

B:SAM

denotes a file called SAM on the disk in unit B.

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 50

STATEMENT: CREATE DATA FILE (CREATEF:)
KILL DATA FILE (KILLF:)

[<label>] CREATEF ([<cond>] : <name>
[<label>] KILLF [<cond>] : <name>

DESCRIPTION: If a file is to be used for collecting data, it
must first be created on a disk; if a file is to be discarded
altogether, it must be killed.

When you create a file with CREATEF, you do not actually start
collecting data in the file., Rather, you tell the system that
the file will exist, and what the name of the file will be.
Thus, the command must include a filename; if the file is to be
created on a disk other than the default unit, a unit designation
must be affixed to the name.

No two files on the same disk may have the same name. On the
other hand, it is possible for two files on different disks to
have the same name. Unless the files contain identical data--
that is, unless one of the files is your backup copy for the
other-- it is not normally wise togive two files the same name.

The KILLF command has the function opposite to that of CREATEF.
Once a file has been killed, the file and the information in it
are lost.

The KILLF command requires that the full file name be given.
Thus, a PILOT program saved with "SAVE MYPROG" requires the
command "KILLF MYPROG.PLT" in order to remove it.

These statements may be used as immediate commands at PILOT
restart with or without the final "F".

EXAMPLE :
CREATEF:B:MATHTST1 (creates a file called MATHTST1
on the disk in unit B)
KILLF:B:MATHTST (causes B:MATHTST]1 and all information
in it to be lost)

- —— - —— —— - T - — - - - = ——— ————_—— VA" VN S W G - ——————— ———

Section 4.6: File manipulation instructions

NEVADA PILOT PAGE 51

STATEMENT: OPEN DATA FILE (OPENF:)
CLOSE DATA FILE (CLOSEF:)

FORMAT:
[<label>] OPENF [<cond>] : <name>,<numeric variable>
[<lapel>] CLOSEF ([<cond>] : <expression>

- ————— - —— - —— -~ ————— - - - ——— - W —— - - ————

DESCRIPTION: To store data in a file, it is necessary to "open"
the file; when data collection has been completed, the file
should be "closed."

Opening a file is not the same as creating it. when you CREATE a
file, you simply establish its existence on the disk. When you
OPEN a file, you open a line of communication between the exist-
ing file and your PILOT program. The OPENF statement must occur
before the first WRITE, RW, APPEND, REWIND, or EOF statement that
refers to that file in the PILOT program. (If you open more than
one file for data collection, you must open each file before the
first program statement that refers to it).

As a result of the OPENF statement, the numeric variable included
on the statement line will be assigned a value. That value is
the file number associated with the file. All subsequent WR, RW,
APPEND, REWIND, and EOF statements that manipulate the file must
refer to it not by its file name, but by a numerical variable
equal to the file number (see the format of those statements).
If you always use the original variable name to refer to the
file, you will not need to be concerned with the file number
itself. For example, if you write

OPENF: B:MATHTST1,i

every subsequent statement referring to the file can be of the
form

<statement>: M

Once a file has been opened, data will be written into it start-
ing at the beginning of the file; any data already existing in
the file will be overwritten. Beware of accidentally destroying
one of your existing files by OPENing it and writing on it for a
second time!

If the file that you are trying to open does not yet exist on the
disk, it will be created automatically.

The CLOSEF statement closes the line of communication between the
program and the indicated file, ensuring that all data from prior
WRITE statements are actually recorded on the disk. PILOT will
automatically close any file that is open at the end of a prog-
ram; nonetheless it is a good idea to close an open file after
the last statement that refers to it. There is a limit on the
number of files that can be open at once. The current limit is

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 52

two. If you try to open too many files, an error message will be
displayed. If you press RETURN, the program will continue to
run, but the file will not have been opened. To solve the prob-
lem that caused the error message, stop the program and use the
EDITor to alter the offending code.

EXAMPLE:

(PILOT program)

OPENF:B:FRED,F (file "FRED" is opened on unit B;
a file number is assigned to F)
WR: F (user's last response is recorded in

the file named FRED, denoted by the
variable containing its file number)
CLOSEF: F (FRED is closed)

- ———— — > W . W SN S P SN W W A A G G G - e I G W G G S T M I G WD S S S G o -

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 53

STATEMEMT : WRITE INTO DATA FILE (WRITE: or WR:)
FORMAT:
[<label>] WRITE {<cond>] : <expression>
[<label>] WR [<cond>] : <expression>

DESCRIPTION: Each of these statements causes the last entry to
- an Accept statement to be written into the file whose number is
indicated by the expression on the statement line. (The expres-
sion may be the numeric variable that represents the file num-
per.)

A WRITE statement will be executed only if the specified file 1is
open: that is, the file must have been opened by an OPENF state-
ment earlier in the program, and it may not yet have been closed
by a CLOSEF statement. Successive WRITE statements will add to
the contents of the file until the file is closed with CLOSEF.
If the file is opened again, WRITE statements will then replace
the previous contents, which will be lost.

If you write a seguence like

T: How old are you?
A: #A
C: A=A+l

WR: F

the value written to the file will be the number assigned to A by
the Accept statement, not the new value of A formed by the C
statement. If you wanted to record the current value of A, you
should use the RW statement, described next.

EXAMPLE:

——— - — .- — W —— o W —- W - — — —— —— — ——_—— " W G - W - W . - i —_—— - - ———

(PILOT program)

OPENF: CITY,C ("CITY" is opened on the disk in unit 0)
T: NAME A CITY
A: (user types "Pittsburg")
WR: C (Pittsburg is written into the file
called CITY on unit 0)
STATEMENT: REMARK WRITE (RW:)
FORMAT:

- - - ————— - - — . T W W e e — - . ——— - " S D ST A] —— ", — -

[<label>] RW [<cond>] : <expression>,<text>

—— — ——————— - Ca W D R S G M e R G M G = e W GE e W W A G D A S W e G G D - G o - — - —

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 54

DESCRIPTION: This statement causes the text to be written into
the file whose number is indicated by the expression on the
statement line. The expression may be the numeric variable that
represents the file number.

The text may contain the names of string or numeric variables.
When the text is written to the output file, each variable is
replaced by its current value. In this respect, a RW statement
is. just like a T statement, except that its destination is a file
rather than display on the screen.

A RW statement will be executed only if the specified file is
open: that is, the file must have been opened by an OPENF state-
ment earlier in the program, and it may not yet have been closed
by a CLOSEF statement.

EXAMPLE:

—— - — - - S N G E. e G T e e WS S W G SR S W W MR G G SUR G G S D G S W AR N G G . S G M G G D W R SR SR R e G G = -

(Pilot program)

OPENF: PERSONAL,P

T: How many brothers do you have?
: (Type 0 if none.)

A:#B (User types "1")

T: How many brothers and sisters do you have altogether?
: (Type 0 if none.,)

A:#S (User types "4")
R: Calculate number of sisters.
C: S=S-B
RW: P, YOU HAVE #5 SISTERS (The text "YOU HAVE 3 SISTERS"

is written into the file called
PERSONAL on unit 0.)

- — - - o - — M D D A T - G, G . G D . A G S W WIS WA M T G ED NS WD W N T NS G G G S -

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 55

STATEMENT: APPEND TO DATA FILE (APPEND:)

FORMAT:

T D G D O - -~ - - — - - ——— —————— - - ————-— - - - = = = —— -

(<label>] APPEND [<cond>] : <expression>

D G S - —— - - ——— ——— - b = - - ——— - - - — — - ——— - — -

DESCRIPTION: The APPEND statement allows information to be added
to the contents of a file that has been closed and reopened.

The normal operation of the first WRITE statement after OPENF is
to overwrite information present in an existing file. The APPEND
statement may be used after OPENF (once) to retain any existing
information in the file, moving the point at which WRIWE will add
information to the current end-of-file location.

EXAMPLE:

T T G —_——————— - ————— - - ———— - -~~~ ———— - ———— - G w— - —— ———

(PILOT program)

CLOSEF: C (Prior use of "CITY" file using file
cees number C has been closed)

OPENF: CITY,A ("CITY" opened again, using file no. A)
APPEND: A (retains old data, prepares to add new)
T: Name an additional city.

A:

WR: A

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 56

STATEMENT : READ FILE (READ:)

FORMAT:

—— — ——— ———— - - —— - " - - G - e G G S S G D S MR S G G S W G - — e

[<label>] READ [<cond>] : <expression>[,<string variable>]

DESCRIPTION: Allows reading a line of data from an existing disk
file into the entry buffer and optionally into a string variable.
The file must be opened using OPENF and a file number or variable
assigned. This is the value referenced by <expression>.

The optional addition of a string variable name will cause the
data to be also stored in memory under that name.

EXAMPLE:

(PILOT program)

OPENF: B:DATAFILE.TXT,X (opens file for reading or writing)

READ: X (one line from file read)
M:SMITH (see if "SMITH" is in the line)
UY: *FOUND

— - - - - W G W e N A S S M G G G G W b G U MR G G M S G D e W W e G S W R T G R WD G D R G - -

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 57

STATEMENT: REWIND FILE (REWIND:)

FORMAT:

[<label>] REWIND [<cond>] : <expression>

T i e — . - —————— -~ ——_————— -~ ——— - ———_———- - —— - —

DESCRIPTION: This statement causes the specified file (i.e., the
file whose number is signified by the expression) to be "re-
wound." 1If one imagines a pointer that indicates where in the
file the next item of data will be written, the REWIND statement
positions the pointer to the beginning of the file. Subsequent
WRITE and RW statements will therefore write over any data al-
ready in the file.

When you open a file with the OPENF statement, the file is, in
effect, rewound. Any data that your program collects will be
written over the data already existing in the file.

A REWIND statement will be executed only if the specified file is
open: that is, the file must have been opened by an OPENF state-

ment earlier in the program, and it may not yet have been closed
by a CLOSEF statement.

EXAMPLE:

T —————— . —— . - - —— . NS W W G R . . G > - —— = ———— — TN N w -

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 58

STATEMENT : END OF FILE (EOF:)

FORMAT:

[<label>] EOF [<cond>] : <expression>

——— - - - — . - . - WS T = . S - - - - - S S

DESCRIPTION: This statement ends the file at the current posi-
tion, i.e., any data following the current position will be
discarded. It is advisable to use this statement before closing
an existing file that has been rewritten or a file that has been
rewound and had new data written into it. 1In fact, it is good
practice to insert an EOF statement before every CLOSEF statement
in your PILOT program, just to be sure that no extraneous data
are left at the end of the file.

If you end a file but do not close it, a subseqguent RW or WR
statement will cause data to be added to the end of the file.

EXAMPLE:

- — - . . S N SE S G WD O P SN N W I I AN W S S GED G G AR W M ED WIS G N S WIS R R R S G G AR S S - -

(PILOT program)

REWIND: N (rewinds the file represented by N)

EOF: N (ends the file represented by N)

Section 4.6: File manipulation instructions.

NEVADA PILOT PAGE 59

STATEMENT: LOAD NEW PROGRAM OR PROGRAM SEGMENT (LOAD:)
FORMAT:

[<label>] LOAD [<cond>] : <name>

LOAD <name> (at PILOT restart)

XEQ <name> 1is an allowed synonym

DESCRIPTION: This statement loads the named file into the prog-
"ram buffer and initiates execution if the file contains a prog-
ram. If the file you are attempting to load is not a PILOT
program, it is simply displayed on the screen.

The specified name must be that of an existing file. If the unit
designation is omitted, the file will be presumed to reside on
the default unit disk. The file type ".PLT" will be supplied if
an alternative is not given.

If you want to load a file but not to execute it - for example,
if you want to EDIT or LIST it - use the GET command, rather than
LOAD. GET is described in Section 4.7.

LOAD may be used in the immediate mode to load a new program and
also in a program sequence to replace the current segment of a
long program with the next segment.

Any time that you return to PILOT restart to LOAD a new segment
of a large program, you have the option of using the NEW:4 com-
mand to set all numeric variables to zero; otherwise, the values
for these variables will be retained. 1In the case of a program
segment larger than the previous one, there is a good chance that
LOADing the larger segment will cause the loss of some string
variables. A way to avoid this difficulty is to arrange your
program segments so that each is shorter than the last. (A prog-
ram segment is just a program that is intended to run in seguence
with other programs.) The INFO command, which is described in
Section 4.7, will enable you to determine the size of any program
Oor program segment.

(PILOT program)

0o e 00 ® e 000

LOAD: NEWSEG (causes NEWSEG to be loaded from the
default disk)

T - ——— - — o _—_ 5 — - — - - —— ———— ——— - - ———— - —V— T~ ——— ———— ———— — > ——— o~ —

Section 4.6: File manipulation instructions

NEVADA PILOT PAGE 60

4.7‘ COMMANDS USUALLY USED IN IMMEDIATE MODE

Although all of these commands except NEW can be entered as
program statements, they will probably be most useful from PILOT
restart. After a command is executed from the restart point,
PILOT expects to receive a carriage return. When you type the
carriage return, you will be back at restart and from there can
enter another command or return to program execution.

COMMAND: EXIT FROM PILOT (BYE:)

FORMAT :

DESCRIPTION: Causes PILOT to discontinue operation, and returns
control to the disk operating system. Once control has returned
to the operating system (CP/M), you can

1) start PILOT again by typing PILOT <cr>, or restart PILOT by
initiating execution at location 103H.

2) Run some other program under the operating system, or
3) remove your disk and turn off the system.

This instruction is normally used in the immediate mode at the
PILOT restart point.

EXAMPLE:

—— - ——— > W - G W G W W G G TR I I W SN G GHS A S G W O GER S S SN G GED W G S W T G GO P S MES N S S SN S S S —— -

- — - W S SR W WA AW R G D S G M G G G G G P e G G GRS WS I G G G AR W G G R T NS R G G IS TP W W G R W S

Section 4.7: Commands usually used in immediate mode.

NEVADA PILOT PAGE 61

COMMAND GET PROGRAM (GET:)
FORMAT:
GET <«file name> (at PILOT restart)

- —— —_—————— - - - ————————— -~ ——— - - —— — o ————— ——— = -

DESCRIPTION: Loads the named program from disk into the program
buffer, without initiating execution.

"This command provides a convenient way of loading a file into
memory for a purpose other than that of running the program: for
example, to EDIT or LIST. Any file created in PILOT may be
loaded in this way. Once the file has been loaded, PILOT returns
to restart. If you decide you want to execute the program after
all, type ROUN.

The specified name must be that of an existing file. If the unit
designation is omitted, the file will be presumed to reside on
the default disk. The file type ".PLT" will be supplied if an
alternative is not given

EXAMPLE:

(command form)

GET B:BOX (loads BOX from the disk in unit B)

- - — - — - - - —— -~ —— - -~ —— Y Y - ——————— — - ———— - —————— -~

Section 4.7: Commands usually used in immediate mode

NEVADA PILOT PAGE 62

COMMAND: RUN PROGRAM (RUN:)

—--—--—-———‘--—-————‘-—--—"--———------—-——————————-———-.-—a——--—-—--

--—-—-———-————--——-—--——_—-——————-.——-—.——-—-—o--——-—-—-——-——-——_-‘-———-—

DESCRIPTION: Starts execution of the program in the program

buffer. If there is no program in the program buffer, nothing
happens.

If you have loaded a file using GET, or if you have discontinued
the execution of a program, you can give this command from re-
start to execute the program, beginning at its first executable
statement, i.e., not wherever you left off.

‘-..-—-—_‘—-———————--——--———-————-—----——-———-—-—-.——-------———————.‘--.

(command form) (function)

RUN Starts execution of the
program in memory

Section 4.7: Commands usually used in immnediate mode.

NEVADA PILOT PAGE 63

COMMAND LIST PROGRAM (LIST:)

FORMAT:
[<label>] LIST [<cond>] :
LIST (at PILOT restart)
LIST:P (at PILOT restart)

T G T A -~ . ———————_—— - — - ———_ —— - - - — —— - —— - - ———— - — = ——— - —

DESCRIPTION: Lists the current contents of the program buffer on
" the display screen or on a printer.

The list command may be given from within a program or from PILOT
restart. If you want to stop a LISTing that is in progress, hit
the ESCAPE key on your keyboard. Control will return to the
program in memory or to PILOT restart, depending on the point
from which the command was given. 1If you want to halt a LISTing
momentarily, you can hit the space-bar. The LISTing resumes when
another key is pressed. If you are LISTing on the screen, you
can reset the video display speed by hitting a number key: 0 is
fastest, 9 is slowest.

KEYS 0-9: Reset video display speed; 0O=fast, 9=slow.

EXAMPLES:
(command form) (function)
LIST lists current program on the console
LIST:P lists current program on a printer

via the CP/M list device.

Section 4.7: Commands usually used in immediate mode.

NEVADA PILOT PAGE 64

COMIMAND: SAVE PROGRAM (SAVE)

——--——“——————-—-————--—_--————--—--———-.—————-————————-—--—-——-—-——.

———— o —— - S W S - W - - - - e e o e 5 S

DESCRIPTION: SAVE writes onto disk the PILOT program or other
file currently in the buffer. SAVEing a file is the only way to
record it after it has been EDITed.

If the file already exists on disk at the time of the command,
the program in memory is simply put into that file, supplanting
any previous contents. If the file does not yet exist at the
time of the command, it is created, and the program in memory is
put into it.

A filename must be specified as part of the SAVE command.

The file type ".PLT" will be supplied if an alternative is not
given. If a unit designation is omitted the file will be saved
on the default unit disk.

EXAMPLE:

— o ———— - — - — - D D . . . b (P S S W WS W WP G M M e N S U R D S e Gee S MO G O W G S G D T o S S

(command form) (function)

SAVE TEST1 Saves a file called "TEST1"
on the default disk drive

.-————--—-—-—-——-——-—--—-—————-——-—-———————-——-—-—-———--——--———--—-——

Section 4.7: Commands usually used in immediate mode

NEVADA PILOT PAGE 65

COMMAND: ERASE CURRENT PROGRAM (NEW)

FORMAT:

- —————— - ———— ——————_— - — —— - ——— - —— - ———— —— - ———— —————-——— ———————

- - — - - ——— - - - — - -— W —— - — - AW > - — W ———— — ———————

DESCRIPTION: Deletes the current program from memory, along with
all string variables. If there is no program in the program

. buffer, nothing happens. NEW can be entered only from PILOT
restart.

The PILOT interpreter is not deleted by this command.

Section 4.7: Commands usually used in immediate mode.

NEVADA PILOT PAGE 66

COMMAND: FILE SIZE INFORMATION (INFO:)

FORMAT:

- ———— - — - = - ——— - - W M WD NS U M e SN NS G S W G = W - W G GO WD W NN R G G SN S IR S G W D S N

DESCRIPTION: Tells where your PILOT program is in the memory of
the computer. Four items of information will be displayed on the
screen:

1) MEMORY SETTING - This number, which is in base 16
(10 through 15 are denoted by the letters A through
F), tells where the program buffer ends.

2) FILE BEGINNING - This number, also in base 16,
indicates where the program buffer starts.

3) CHARACTERS IN FILE, including blanks - This number,
in base 10, indicates the number of characters in
the program.

4) SPACE REMAINING - This number, also in base 10,

indicates the number of unused characters remaining
in memory.

The INFO command helps you to decide whether your program is too
long relative to the amount of memory allocated to it. (Remember
that string variables are stored along with the program in the
program buffer.) If your program almost f£ills the buffer, you
should consider shortening the program, dividing it into seg-
ments, or assigning more memory (with the SET M= statement.)

EXAMPLE:

- —————— ————————————————— —— . — - —————— —— ———— _ —— - ——— - —————— - —————— -

(command form) (display)

INFO SFFFH Memory setting.
1D69H File beginning.
2142 Characters in file.
14905 Space remaining

————— - —— - ——_ - ———— - —— - - — — _ - - — - - — . G G - = ——— - o— -

Section 4.7: Commands usually used in immediate mode

NEVADA PILOT PAGE 67

COMMAND : DIRECTORY LIST (DIR:)

. - . - — - —— ——— A —— - ———— > —— —————— A —— S 4 - > - G W W AN W W w——————

- - ——————— ———— — -— W — - —— N . . . - ——————— - —— - -

DESCRIPTION: Displays files on default disk unit or designated
disk unit.

When PILOT is configured for your specific terminal, you are
given a choice of whether DIR should display all files on the
designated unit or display only files of type .PLT .

The listing of files is similar to the DIR command in CP/M, but

it is convenient to be able to obtain this information without
leaving PILOT.

Section 4.7: Commands usually used in immediate mode.

NEVADA PILOT PAGE 68

4.8 CONTROL OF VIDEO CASSETTE RECORDER

PILOT provides statements which can control random access to
video playback, both picture and sound. The computer must be
connected to specific video cassette equipment via a parallel
port. If the computer uses memory-mapped display, the video
picture can be displayed on the same monitor screen used for
normal PILOT interaction. If a separate CRT is used, then this
is not easily arranged, -and it will likely be necessary to pres-
ent the video image from the cassette player via a separate
monitor.

Sony models which currently allow this operation are:

idlodel SLO-320. A recorder/player in 1/2 in. Betamax format.
Model SLO-323. Newer model of the above.
ilodel VP-2011l. A player only in 3/4 in. U-matic format.

Models SLO-320 and SLO-323 allow the video picture to be display-
ed on the same monitor screen used for normal PILOT interaction.
A custom connector cord is required between a parallel port
connection on the computer and the cassette player. NoO changes
are required to either the computer or the cassette player.

STATEMENT START VIDEO COUNTER (VSTART:)
SET VIDEO COUNTER (VSET:)
VIEW SELECTED VIDEO (VIEW:)

FORMAT:
{<label>] VSTART [<cond>]:
[<label>] VSET [<cond>]: <count>
[<label>] VIEW [<cond>]: [<start#>] [,<stop#>]

DESCRIPTION: A search for a specific place at which video
playback is to start or stop is dependent on a count of pulses
recorded on the cassette. The first step is to rewind the cas-
sette to its starting point and to reset the counter in PILOT
which keeps track of the pulses. The VSTART statement wis:
rewind the cassette and set the counter to zero. If for some
reason you do not wish to rewind the cassette and you know what
the count should pbe, the VSET statement can be used to set the
count to a specific number. The count used in PILOT approximates
seconds of elapsed time, and searches snould pe accurate to
within a second or two.

The VIEW statement is used to initiate search and viewing of a
particular segment of recorded video. The start number and stop
number approximate seconds of time relative to the zero point set
by VSTART or by VSET. The start and stop numbers may be numeric
constants or variables. If tne start number is missing, then
viewing begins from the present location. If the stop number is
missing, tnhen the cassette player will continue to play. Control
can be returned to the next PILOT statement by pressing ESCAPE.

Section 4.8: Control of Video Cassette Recorder.

NEVADA PILOT PAGE 69

EXAMPLE:

- ———— -~ —— —_— - D S — . —— - - — - ——— - ——— . —————

VSTART: (rewinds cassette and sets counter to zero)
T: Push RETURN to see a demonstration of how tnese parts
T: can be put together.

A:

VIEW: 420,505

T: Now try to answer the question again.

- ——————— G - G - — - - W WD T WS TS S WA NS WA S G M S S S G S S U SN G GOR W T S SN e N G W

Directions for creating the necessary connection cord:
This cord connects between a parallel port on the computer and
the control socket on the Sony cassette unit.

1.

2.

Obtain Sony part No. 1-551-317-00 which is a replacement cord
for RM-300 random search control.

Open the shell of the special connector and move the pin
attached to tne orange wire from position 9 to position 5.

Remove and discard the small Molex connector from the other
end of the cord, shortening all wires to 1 in. from the
point where they exit from the outer insulation. Leave

the grey and light green wires connected together, cutting
them 1/4 in. past where they join.

Strip 1/4 in. of insulation from the end of all wires except
white, brown, and copper braid (covered with black spagetti)
Tin the stripped wires. The white, brown, and copper wires
are not used.

Connect as follows to a 25 pin-D subminiature female
connector:

pin wire parallel port signal

2 grey & lignt green signal ground

6 light blue input data, bit 7

7 black input data, bit 6

3 yellow input data, bit 5
18 dark green output data, bit 7
19 dark blue output data, bit 6
20 violet output data, bit 5
21 red output data, bit 4
22 orange output data, bit 3

Section 4.8: Control of Video Cassette Recorder.

NEVADA PILOT ' PAGE 70

The CP/M BIOS section should direct RDR: and PUN: logical devices
(input and output respectively) to a parallel port used for
control of the cassette unit. PILOT will receive and send
appropriate control bits as shown in the table on page 4-48 in
response to VSTART, VSET, and VIEW commands.

Timing is based on a computer running at 2mh. For faster
computers, the value of PATIM in the system data area will have
to be reduced by a patch using DDT. One of the files on the
PILOT distribution disk is NVPILOT.PRN which is an assembly
listing of the system data area. This provides the address where
the current value if PATIM can be changed.

In order to view computer-generated text and video playback on a
memory-mapped video screen, connect video output from the compu-
ter to Video In on the cassette player, and Video Out on the
cassette player to the monitor. This will require a cord with a
UHF connector on the computer end and a BNC connector on the Sony
cassette recorder end.

Section 4.8: Control of Video Cassette Recorder.

NEVADA PILOT PAGE 71

SECTION 5

ENTERING AND EDITING YOUR PILOT PROGRAM

5.1 THE ZDIT COMMAND (EDIT)

FORMAT:
EDIT (At PILOT restart)
\EDIT: (At any A statement)

DESCRIPTION: Makes available a new set of commands that can be
used to create and alter text and program files. In EDIT the
cursor may be positioned anywnere on the screen, lines may be
scrolled up and down, and characters and entire lines may be
inserted or deleted. There are also provisions for searching the
file for strings, and for moving quickly to any one-tenth portion
of the file from 0 to 9.

EDIT is different from all other PILOT commands, in that when
you enter it, or execute it within a program, you move into an
operational mode that is really quite separate from the inter-
preter. The EDITor is a subsystem of PILOT. It enables you to
make changes in any text file (whether or not it was created by
PILOT, or for use with PILOT.) The EDITor does not not know or
care whether you are working with a PILOT program, a BASIC prog-
ram, a list of student responses, or a letter to your doctor.

The EDIT command may be entered from immediate mode by typing
"SDIT". If you want to enter a new PILOT program, give the EDIT
command from PILOT restart, without LOADing or READing anything
into the program buffer. If you want to EDIT a file that you have
created in PILOT with WRite statements, use the GET command to
load it into memory without executing it.

Wnen you enter the EDIT command from immediate mode, the first
page of the file in memory is displayed, with the cursor at line
one and position one (column 0). If you give the command in
response to an A statement, or if EDIT: is actually a statement
in your PILOT program, the first line on the display will be the
A statement or the EDIT statement, respectively. If the existing
text is not enough to fill the screen, the remaining portion of
the screen will be filled with blanks. 1If you are entering a

file for the first time, just begin typing; otherwise, the file
displayed on the screen is ready for EDITing. The next few pages
tell how to go about changing a file by using control characters.

The EDIT command may also be entered, with a backward slash
preceding and a colon following ("\EDIT:"), in response to any A
statement. Under these conditions, the A statement at which you
entered the command will be at the top of the screen and any
following text will fill the rest of the screen.

Section 5: The PILOT EDITOR.

NEVADA PILOT PAGE 72

Remember, the control key along with another key produces a
control character. Press CTRL-F to exit from the EDITor and
return control to command mode. If you want to execute the
program you have just EDITed, type RUN.

Below is a 1list of the command keys used by the EDITor. A more
complete description of each command is given after the list.
These are default commands that will be used unless modified
during a configuration process. Other control codes or special
character seguences may be substituted, thus allowing use of
special keys on some terminals. The specific memory locations to
be changed will be found in the file NVPILOT.PRN.

5.2 COMMAND KEY LIST

CONTROL KEYS

CONTROL W - move Cursor up one line

CONTROL 2 - move cursor down one line

CONTROL A - move cursor left one character

CONTROL S - move cursor right one character

CONTROL T - toggle insert character mode; ON/OFF

CONTROL G - delete character under cursor

CONTROL B - insert line above cursor

CONTROL P - delete line

CONTROL N - move cursor to upper left corner of screen

CONTROL E - move file up one line

CONTROL X - move file down one line

CONTROL R - scroll file up one-half page

CONTROL C - scroll file down one-half page

CONTROL Q - move cursor toamid line, column 1

CONTROL V - initiate string search mode

CONTROL L - continue search for string

CONTROL O - cause reverse video for subsequent characters

CONTROL F - exit from the editor or editor text search

TAB - move cursor to the next tab position (CONTROL-I)

RETURN - insert line below cursor (CONTROL-M) ‘

LINE FEED - delete all text from the right of the cursor
and position cursor one line down (CONTROL-J)

BACKSPACE - backspace and erase a character (CONTROL-H)

DELETE - (or RUBOUT) same action as backspace

REPEAT - re-enter whatever other key, or combination

of keys, is depressed; continue wnile
REPEAT key is held

When you leave EDIT mode by pressing ctrl-F, the program you have
prepared resides in memory and is ready to RUN. But it has not
been saved. If you wish it to be stored in a disk file for later
use, you must type "SAVE <file name>" before le~.ing PILOT.

Section 5: The PILOT EDITOR.

NEVADA PILOT ' PAGE 73

5.3 DETAILED COMMAND DESCRIPTION

5.3.1 Cursor Positioning Commands

NOTE: Mo&ing the cursor does not change the text.

The keys A,S,W,Z form a diamond on the imput keyboard. When

pressed simultaneously with the 'CTRL' (control) key, they
move the cursor as indicated below:

CONTROL W move cursor up one line

CONTROL Z move cursor down one line

CONTROL A move cursor left one character
CONTROL S move cursor right one character
CONTROL Q move cursor to mid screen, column 1

5.3.2 Screen Scroll Commands

Screen scroll commands are provided to allow the file to be
"rolled" through the screen area until the desired file line is
reached.

CONTROL E scroll up one line
CONTROL X scroll down one line
CONTROL R scroll up one-half page
CONTROL C scroll down one-half page

5.3.3 Direct File Positioning Commands

In addition to cursor positioning controls, the EDITor offers a
way of searching for a specific string of text within your file.
The search command is CONTROL V.

CONTROL V editor text search

When you type control V, the last line of the display is cleared
and the normal video reversed for this line. 1If an extra line is
available, such as a 25th line on some terminals, this line is
activated and used. Tne cursor is placed at the first position
in the line. At this point the EDITor is waiting for you to
enter either: 1) An input line consisting of one or more charac-
ters, or 2) a single digit. The input is terminated by a car-
riage return.

1. Character entry:

Any occurrence of the string entered, regardless of preceding or
following characters, will represent a find. Therefore, only

enough characters to define the desired text uniguely need be
supplied. As an example, "the gqu" can be used to locate a line
in the file containing "the quick brown fox."

Section 5: The PILOT EDITOR.

NEVADA PILOT PAGE 74

Upon receiving a carriage return, the EDITor searches the file,
beginning one line below the current cursor position, until a
string match is made or until the end of the file is reached. At
the beginning of a file, the search begins at the first line. If
a match is found, the EDITor positions the line containing the
match at the top of the screen.

CONTROL L continue search

If you wish to continue searching for text matches after having
left edit text search, pressing CONTROL L will cause continued
searching for the string that was last designated. The EDITor
resumes the search at the first line following that in which the
cursor resides at the time of the command and continues until a
match is made or until the end of file is reached. This command
may be given as often as is desired.

2. Digit entry:

If you enter a digit from 0 to 9 in the command line, the file
will be scrolled so that the top line on the video display
screen marks the end of that tenth of the file which corresponds
to the number entered. Thus, if the number is 5, the file will
be positioned at the half-way point. If 0 is entered, the file
will be positioned at the beginning. ESCAPE will cause an exit
from editor text search and a return to EDIT mode.

5.3.4 File Modification Commands
CONTROL T character insert mode switcn (on-off-on....)

Normal file characters input from the terminal are placed in the
file in either of two modes. These modes, normal and insert, are
alternately selected using the insert mode control.

When insert mode is OFF (default mode when EDITor is entered),
each character that you type replaces what was formerly at the
current cursor position, and the cursor moves to the right one
place. When insert mode is ON, characters are actually inserted
BEFORE the current cursor position, moving the character at that
location, and any characters to the right of it, one position to
the right. The cursor also advances one position. A line con-
tains a maximum number of characters, so you may begin to lose
text that is pusned off the screen by tne insertion.

CONTROL G delete character
The delete character command removes the character at the

current cursor position and moves each character to the right
of the cursor one position to the left.

Section 5: The PILOT EDITOR.

NEVADA PILOT PAGE 75

CONTROL B insert line command

The insert line command puts a new blank line at the present
cursor position, and moves each subsequent line of the file one
row down. The cursor is moved to the first character position
of the new line. Use this command to insert a new line "above"
the current 1line.

CONTROL P delete line command
This control removes the current cursor line from the file.
LINEFEED (CONTROL J) blank remaining line

Linefeed deletes all characters to the right of the current
cursor position (on the cursor line). The cursor appears at the
beginning of the next line in the file.

CARRIAGE RETURN (CONTROL M) scroll up & insert line

Carriage return scrolls up one line and inserts a blank line in
the file. The cursor is moved to the first character position of
the new line. Use RETURN to insert a line 'BELOW' the current
cursor position. No characters on the current line are deleted.
The exception to this rule is that, if a file contains fewer than
one page of text, RETURN will open a new blank line below the
last line of text but will not scroll the file.

TAB (CONTROL I) horizontal tab

When TAB is pressed, the cursor will move to the next column
divisible by eight (columns 8, 16, 32, ...).

CONTROL O reverse video mode (on-off-on....)
When reverse video mode is off, characters are displayed white on

a black background. This control causes subsequent characters to
be reversed as black on white until another CTRL-O is entered.

Section 5: The PILOT EDITOR.

NEVADA PILOT PAGE 76

SECTION 6

ERROR MESSAGES AND HOW TO DEAL WITH THEM

Most of these error messages have been introduced at other points
in this manual. Here we present a summary which you may find
useful as a reference. In each case, an example of the message,
as it might appear to a user, is followed by a brief explanation
of its likely implications.

<program text>
*UNRECOGNIZED PILOT STATEMENT

The text displayed above is not recognized as a valid PILOT
statement. Check the format of what you see displayed. Perhaps
a colon is missing. Type "\EDIT:" to enter the EDITor to fix the
problem.

*<label> or PR: or M: -NOT FOUND

The PILOT program in memory specifies a jump to a statement or a
subroutine that does not exist. Check for a possible misspelling
of tne label in the J or U statement. The expression enclosed by
the angle brackets is the label as it appears spelled in that
statement. If the item not found is a PR or M statement, there
is probably no such statement between the J or U statement and
the end of the program.

<C statement>
*CANNOT EVALUATE THE EXPRESSION

A compute statement has incorrect format. Maybe it specifies an
operation that is not allowed, e.g. C: R= A OR B is incorrect,
since "OR" is not a recognized operation.

<C statement>
*VALUE OUT OF RANGE (-32768 TO 32767)

The compute statement in the angle brackets has either an element
or a result that is not in the possible range of numbers allowed
in PILOT. In such a case, the value assigned to the designated
variable is -32768 for a negative number or 32767 for a positive
number.

<string variable name>
If you refer to a string variable to which no value has been

assigned, and your immediate intention is not to accept a value
for that variable--say, for example, you wanted to print or write

Section 6: Error Messages.

NEVADA PILOT PAGE 77

it--that variable name, itself, is displayed. You may want to
make such a reference intentionally. If not, check for a spelling
error, make sure that the variable you are naming is the one that
you really intended to name, or find out if your statement refer-
ring to a given variable really follows the assignment of a value
to that variable. Did you put a VNEW:$ statement in your program
and then try to retrieve a value that you had erased?

*NUMERIC RESPONSE REQUIRED

The user of a PILOT program receives this message if he gives a
non-numeric reply to an A statement that requests a value for a
numeric variable. The solution is generally to give a numeric
reply.

*USE DEPTH EXCEEDED

The program being executed has more than seven subroutines in
execution. See discussion of this for the USE: statement, p. 28.

*NO ROOM

There is insufficient space in memory for the string variable
that you are trying to store. You may want to use a VNEW:$
statement to clear the area occupied by variables that you are no
longer using.

The following error messages may occur during file manipulations
and result from an error condition generated by CP/M. Unless the
error indicates a machine malfunction, you may press the RETURN
key and your program will continue at the next statement. It is
a good idea, however, to stop your program and investigate the
reason that an error message was generated.

ERROR WHILE CLOSING FILE

ERROR WHILE CREATING FILE

DRIVE NUMBER OUT OF RANGE
UNAVAILABLE CP/M FUNCTION CALLED
FILE NUMBER OUT OF RANGE

LIMIT FILE NAME TO 8 CHARACTERS
FILE NOT OPEN

FILE NOT FOUND

TOO MANY FILES OPEN

END OF FILE

If you have not received a specific error message, but gomething
seems to be going wrong, consider the following possibilities:

1) You have used more than one label with the same.name; control
has been passed to the first such label to occur in the program,
rather than to the label to which you intended to jump. Rename
one of the labels.

Section 6: Error Messages

NEVADA PILOT PAGE 78

2) You have loaded a program that is too big or a text file that
is not executable as a program.

3) You have attempted to enter a response longer than the present
value of INMAX will allow. (This problem does not apply to an
immediate command. Immediate commands override INMAX.)

4) You have misspelled or mispunctuated something.

5) You have LOADed or READ something into memory and obliterated
the former program (and possibly some of your string variables.)

6) You have entered something that is not a command, and it has
simply been displayed.

7) You have neglected to mark the end of a subroutine with an End
statement.

8) You have relied on a zero value for a numeric variable, but
you have not re-initialized numeric variables since the last

program was executed.

PILOT's built-in Editor allows a program author to make immediate
repairs to a faulty program in many cases. When an error message
appears, the computer will wait for an entry from the keyboard.
If you press RETURN the program will proceed with the next state-
ment, but if you wish to make a change to the program, you may
immediately enter EDIT mode by typing "\EDIT:". The last line of
the program that has been executed will appear at the top of the
screen.

Section 6: Error Messages

NEVADA PILOT PAGE 79

SECTION 7
PROGRAMS TO TEST PILOT FUNCTIONS

7.1 PLTST and related test programs.

The following PILOT programs were developed as tests of PILOT
functions and will prove useful as examples in those cases where
the description of a particular operation does not seem complete-
ly clear in the manual. The programs are provided on the disk so
that you can watch PILOT in action. PILOT statements and some
PILOT error messages are introduced. The information displayed
by the use of T statements is most often an indication of what is
happening in the PLTST program itself, so it helps to refer to
the program listing when running it.

Please note that these programs use the LOAD statement to trans-
fer control from one to the other, and that they expect the
programs to reside on CP/M disk A. If the test programs are on
drive B, then the LOAD statements must be modified (e.g.
LOAD:B:<file name>) to address the proper disk drive. 1If all
programs are on disk A, then initiate the test by typing:

A> PILOT PLTST
7.2 WAPP

Another program, WAPP, is provided for both demonstration and
test purposes. WAPP stands for "Write a PILOT program," and it
asks you to supply one or more multiple-choice gquestions, with
answers and responses keyed to each answer. You don't have to
program any of the details, but just answer the prompting ques-
tions. WAPP is an example of how one PILOT program can serve as
a vehicle for another to be written. You can save, and late
execute, the multiple-choice program that WAPP writes for you.

Both PLTST and WAPP are written in PILOT, so there is nothing
that either of these programs does that you cannot do with the
statements described in this manual. If you cannot figure out
how a program does something, either LIST the program or display
it in the EDITor, and take a look at the PILOT code.

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE
R: PLTST TESTS OF PILOT FUNCTIONS
CH:
T:TEST PROGRAM OF PILOT FUNCTIONS
T:

T:YOU CAN TRY PILOT CORE INSTRUCTIONS:

: T: TO PRESENT TEXT

: A: TO ACCEPT AN ANSWER.

: M: TO MATCH ELEMENTS OF AN ANSWER.

: J: TO JuMP TO A LABELED PLACE.

: -U: TO USE A SUBROUTINE.

: E: TO END A SUBROUTINE OR THE ENTIRE PROGRAM.

: C: FOR LIMITED COMPUTATION.

¢ R: TO INSERT A REMARK WITH NO OPERATIONAL EFFECT.

BEGIN BY TYPING ANYTHING, THEN PRESS 'RETURN' ’

: USE DELETE TO ERASE ONE LETTER, AND CTRL/X
¢ TO KILL A LINE BEFORE YOU HAVE PRESSED RETURN.
A:SWHAT
CH:
T:YOU TYPED SWHAT.
T:SWHAT IS WHAT YOU TYPED.

T: PRESS ‘'RETURN' TO CONTINUE.
A:
CH:
T:
:Y OR N APPENDED TO ANY INSTRUCTION MAKES ITS USE CONDITIONAL
:Y: OR N: ALONE ARE SHORTHAND VERSIONS OF TY: OR TN:
T: :
*TESTM

T:1I WILL LOOK FOR ‘'ABC', ' DEF', 'GHI ', OR ' JKL '

T:NOTE THE SPACES. THEY ARE IMPORTANT IF THE LETTERS WE ARE
T:TRYING TO MATCH ARE NOT AT EITHER END OF A LINE.

A:

M:ABC, DEF,GHI , JKL ,

TY :MATCH

TN :NO MATCH
U:*ASK
JY:*TESTM
J:*TESTC

*ASK

T:AGAIN? (Y OR N)

A:

M: XY

E:

*TESTC
CH:

T:TYPE A NUMBER FROM -32768 TO 32767 -
A: $A

T:ANOTHER NUMBER PLEASE
A:#B

T:YOUR NUMBERS ARE #A AND #B.

Section 7: Programs to test PILOT functions.

80

NEVADA PILOT

T:I WILL SUBTRACT THEM.
C:C=A-B
T:$#A - #3 = #C
T:
T: TYPE 'NEXT' TO GO ON
A:
M:NEXT
JIN:*TESTC

T:TE5TS CAN Bi CONDITIONAL ON A NUMERIC VALUE > 0
T:A NUMERIC VARIABLE IS APPENDED AS IN 'J(X):*LABEL'
T:TYPE 'ABC' OR 'DEF'
A:
M:ABC
CY:A=1
M:DEF
CY:B=1
T (A) :ABC FOUND
T (B) :DEF FOUND
C:C=A+B
J (C) :PLUSEND
T:NO MATCH OF EITHER ABC OR DEF

*PLUSEND

T:END OF TEST
U:*ASK
JY:*TESTPLUS

*MORE
CH:

T:SOHME OTHER INSTRUCTIONS AVAILABLE IN THIS SYSTEM ARE:
AS: TO ACCEPT ONLY ONE CHARACTER (WITd NO 'RETURN').
INMAX: TO LIMIT THE NUMBER OF CHARACTERS ACCEPTED.

CH: TO CLEAR SCREEN AND HOME CURSOR.
CL: TO CLEAR THE REST OF THE CURRENT LINE.
: CE: TO CLEAR TO THE END OFf THE SCREEN.
: CA:R,C TO PLACE THE CURSOR AT POSITION R,C.
: PA:T TO PAUSE FOR 'T SECONDS.
: FOOT: TO PROMPT A RESPONSE BEFORE PROCEEDING.
FOOT:
*TESTIN
CH:
T: AS: WILL BE USED TO LOOK FOR 'A'.
T: PRESS ONLY A SINGLE KEY. DO NOT PRESS 'RETURN'
T: ———— —-——-
AS:
“i1tA

Y:YOU TYPED 'A‘
N:THAT WASN'T 'A‘
T:AGAIN? (Y OR N)

Section 7: Programs to test PILOT functions.

PAGE 81

NEVADA PILOT PAGE 82

AS:
M: Y
JY:*TESTIN

*TESTCTL
CH:
CA:3,10
T:THIS TEXT STARTS AT ROW 3 AND COLUMN 10.
CA:4,10
T:TYPE ANYTHING UP TO 5 CHARACTERS (HERE WE USE INMAX:5).
INMAX:5
A:SLIMIT
INMAX:64
T:YOU TYPED 'SLIMIT'.
T:WHAEN YOU PRESS 'RETURN' I WILL ERASE THE ABOVE LINE.
A:
CA:6
CL:
CA:8
T:WHEN YOU PRESS 'RETURN' I WILL BLINK THE WORD 'RETURN'
A:
C:R=38
C:C=17
U:*BLINK
U:*ASK
JY :*TESTCTL
J : *PAUSE

*BLINK
C:X=5
*BL2 CA:R,C
T: -
U:*DELAY
CA:R,C
T :RETURN
U:*DELAY
C:X=X~1
J(X):*BL2
*DELAY
C:Y=2
*DELY
CiY=Y-1
J(Y):*DELY
E:

*PAUSE
T:WHAEN YOU PRESS ‘'RETURN' THERE WILL BE A 5 SECOND PAUSE.
A:
PA:5S
U:*ASK
JY:*TESTCTL

*ERRORS

Cii:
T:I WILL SHOW SOME ERROR MESSAGES. AFTER EACH, PRESS 'RETURN'.

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE

T:
PA:1
T:FOR EXAMPLE,
T:1I WILL TRY TO JUMP TO AN UNKNOWN LABEL '*HERE'
T:
J:*HERE

CH:
T:THE FOLLOWING C-STATEMENT HAS BAD SYNTAX:
T: C:X NOT Y
- Tz

T:THE EXPRESSION FIELD WILL BE DISPLAYED + AN ERROR MESSAGE.
T:
C:X NOT Y

CH:
T:A C-STATEMENT CAUSES X TO BECOME GREATER THAN 32767
T:
T:THAE STATEMENT CAUSING OVERFLOW WILL BE DISPLAYED.
T:

C:X=32767+10
T:THE VALUE OF X IS LEFT AT #X
T:A SIMILAR MESSAGE APPEARS WHEN X BECOMES SMALLER THAN -32768
:EXAIMMPLE:

C:X==-32767-10

T
T:
T:TYPE 'R' TO REPEAT ERROR MESSAGES.
INMAX:1

A

M

T:AN ILLEGAL STATEMENT IS DISPLAYED:
MW *
T:MW: IS NOT LEGAL IN THIS SYSTEH4.
T:
T:YOU CAN O3TAIN IMMEDIATE OPERATION OF ANY INSTRUCTION BY
T:PRECEDING IT WITH '\'. FOR EXAMPLE:
T: \J:*LABEL WILL JUMP IMMEDIATELY TO *LABEL.
T: \EDIT: WILL ENTER THE EDIT MODE AT THE PRESENT LOCATION.
T: \ FOLLOW=D BY RETURN WILL RESTART PILOT IN COAMAND MODE.
FOOT:
*END p
CH:
CA:5,20
T: TESTS ARE NOW COMPLETE
CA:7
T:Would you like to see tests of some advanced features? (Y/WN)
AS:
M:Y
LOADY:PLTST2
FOOT:Press RETURN for command mode \

Section 7: Programs to test PILOT functions.

83

\

CH:

T:PLTST2
T:
T:
T:
T:
T:
T:
T:
T:
T:
T:
T:

m<aXzPpHO

*SELECT
CA:12,6
AS:

NEVADA PILOT PAGE 84

TESTS OF ADVANCED PILOT FZATURES:

Concatenation of strings in the C-statement
Indirect string reference and forced accept (A:=)
Substrings produced by successful matches
Ambiguous (wild) strings * and ?

Match jump statement (M4J:)

Jump according to item in match list (JM:)
VNEW:\$ and VNEW:\#

EXIT TO COMMAND MODE

Select test with a single letter

(Accepts a single character without RETURN)

IA:C,I,S,A,Di’J'V'E
JM: *CONCAT, *INDIRECT,*SUBSTR, *AMBIG, *MJUMP , *JMATCH , *VNEW, *EX

J:*SELECT

*CONCAT
LOAD:TST-C

*INDIRECT
LOAD:TST~-I

*SUBSTR
LOAD:TST-S

*AMBIG
LOAD:TST-WILD

*MJUMP
LOAD:TST=-MJ

*JMATCH
LOAD:TST-JM

*VNEW
LOAD:TST-VN

*EX E:

Section 7:

Programs to test PILOT functions.

NEVADA PILOT PAGE 85

CH:

T:IST-C Concatenation of strings in the C-statement

T:

T:TYPE A NUMBER

A:#A

T:TYPE "WORD"

A:$NAME

T:NOW TYPE ANY WORD

A:$AORD

. C:$STEST=THE NUMBER IS #A, THE WORD IS SSNAME.
T:TEST: $TEST

FOOT:

LOAD:PLTST2

CH:

T:TST-1 Indirect string reference and forced accept (A:=)

T:

T:ENTER 'END'

A:SONE

T:ENTER 'ONE'

A:STWO

T:ENTZR 'TIWO'!

A:3THREE

T:THIS SHOULD BE END: $$$THREE

T:THIS SHOULD BE END: SONE

T:THIS SHOULD BE ONE: $TWO

T:THIS SHOULD BE END: $STWO

T:THIS SHOULD BE TWO: STHREE

T:THIS SHOULD BE ONE: S$STHREE

T:THIS SHOULD BE END: $$$STHREE

A:=$3THREE

M:ONE

TY:YES, INDIRECTION WORKS FOR A:=

TN:00PS! SOMETHING'S WRONG IF YOQOU SEE THIS

FOOT:

LOAD:PLTST2

CH: ‘

T:TST-S Substrings produced oy successful matches

*START

T:

T:TYPE SOMETHING WITH "rdIS" IN THE MIDDLE

A

M:THIS

TN:NO MATCH

Y:SLEFT

Y:$MATCH

Y:$SRIGHT

T:

T:AGAIN? (Y/N)

AS:

MY

JY: *5TART

LOAD:PLTSTZ2

Section 7: Programs to test PILOT functions.

CH:
T:TST-WILD
T:

T:LOOK FOR
A:

M:A*BC
U:*ANS

T:LOOK FOR
A
M:A*BC
U:*ANS

‘T: LOOK FOR
A:

M:*
U:*ANS

T:LOOK FOR
A

M:A?BC
U:*ANS

T:LOOK FOR
A:

M:A\?3C

U: *ANS

T:LO0OK FOR
A:

M:\?
U:*ANS

T:LO0OK FOR
A:

M:A\BC

U: *ANS

LOAD:PLTST2

*ANS
Y:MATCH
N:NO MATCH

e o

E

Se

NEVADA PILOT

Ambiguous (wild) strings * and ?

A<arycning>BC

A*BC

*

A<any-one>BC

A?BC

?

A\BC

ction 7: Programs to test PILOT functions.

PAGE 86

NEVADA PILOT PAGE 87

CH:

T:TST-MJ Match jump statement (MJ:)
*START

T:

T:TYPE "ONE", "TWO", "THREE", OR "FOUR"
A:

MJ :ONE

T:0NE

J:*QUT

MJ : TWO

- T:TWO

J:*0U0T
MJ: THREE
T:THREE
J:*oUT
M:FOUR
T:FOUR

*OUT T:AGAIN? (Y/N) \

AS:

M:Y

JY : *START

LOAD:PLTST2

CH:

T:TST-JM Jump according to item in match list (Jil:)
*START

T

T:TYPE ONE, TWO, OR THREE
A:

1:ONE,TWO,THREE

JM: *ONE, *TWO, *THREE

TY:NO MATCH

J:*AGAIN

*ONE T:ONE
J:*AGAIN

*TWO T:TWO
J:*AGAIN

*THAREE T:THREE

*AGAIN
T:AGAIN? (Y/N)
AS:

MY

JY : *START
LOAD:PLTSTZ

Section 7: Programs to test PILOT functions.

CH:

T:TST-VN

T:
T:0peration:

s ee 0o ee ee oo

N=2
SNAME=THIS
#N, SNAME

L. AT 1)

EW:S$
#N, SNAME

HHaRB H<Eg 8300831

s se oo

C:$SNAME=THIS
VNEW: $
T:$N, SNAME

FOOT:
LOAD:PLTST2

Section 7:

NEVADA PILOT

VNEW:\$ and VNEW:\#

PILOT Code:
C:N=2
C:\SNAME=THIS
T:\#N, \SNAME

VNEW:\$
T:\#N, \$NAME

C:\$SNAME=THIS
VNEW:\#
T:\#N, \$NAME

Expected:

2, THIS

2, \SNAME

0, THIS

Programs to test PILOT functions

PAGE

88

NEVADA PILOT PAGE 89

R: W.A.P.P. - WRITE A PILOT PROGRAM

R: M. KAMP UCSF MARCH 1978

R: J. STARKWEATHER, DISK VERSION, APRIL 1979

CH:

CA:2

T:THIS IS THE W. A, P. P. PROGRAM .,
CA:5

T: W.

T:

T: A.

T:

T: P.

T:

T:
PA:2
CA:2
CL:
T:W. A. P. P. S TANDS FOR
PA:1

CA:5,12

T:WRITE

CA:7,12

T:A

CA:9,12

T:P I LOT

CcAa:11,12

T:PROGRAM

CA:7,40

T:WRITTEN BY

CA:8,40

T:MARTY KaMp, 3/78

" CA:9,40

T:& JO4N STARKWEATHER, 4/79

FOOT:

*INSTR

CH:

CA:6,5

TH:DO YOU WANT INSTRUCTIONS ? (YORN)....
AS:

M: N,

JY:*GO

M: Y ,

JN:*INSTR

CH
CA:2

T: THIS PROGRAM WILL PRODUCE A PILOT PROGRAM CONTAINING

T: '

T:MULTIPLE CHOICE QUESTIONS AND RESPONSES. YOU WILL BE ASKED
T:

T:TO TYPE IN THE TEXT OF THE QUESTION (1-3 LINES), 2 TO 5

T: -
T:ALTERNATIVE ANSWER CHOICES, AND ONE OR TWO LINES OF FEEDBACK
T:

T:FOR EACH OF THE CHOICES. W.A.P.P. WILL DO ALL THE

T:

P.

e 00 o

Section 7: Programs to test PILOT functions.

NEVADA PILOT) PAGE 90

T: PROGRAMMING AND HOUSEKEEPING FOR YOU.

FOOT:

CH:

CA:2

T: Before you tell W.A.P.P. to save a section of the program
T:

T:on disk, make sure you have a disk in unit B. W.A.P.P. will
T:

T:not save what you have written until you have a chance to

T:

T:review your text. You can make changes as you type in each
T:

T:line, but (in this version) once you have entered a line of
T:

T:text you must re-enter the whole question if you need to make
T:

T:changes.

FOOT:

CH:

CA:2

T: After you type in the text of a question along with its
T:

T:answers and feedback, you can tell W.A.P.P to save it on disk.
T:

T:W.A.P.P. will generate the PILOT code and position everything
T:

T:appropriately on the screen. Each question is saved as a

T:

T:separate file which will LOAD the next question. You can run
T:

T:the program produced by W.A.P.P. by typing "LOAD WAP1l" or

T:

T:"GET WAP1" followed by "RUN". The program may be further

T:

T:edited and then saved like any other PILOT program.

FOOT:

*GO

R:Initialize frame count

C:I=1

CH:

CA:2

T: IT IS POSSIBLE TO SET UP YOUR PROGRAM SO IT WILL COLLECT
T:

T:ALL RESPONSES AND WRITE THEM INTO A DISK FILE (DATA).

T:

T:IF YOU TYPE 'Y' W.A.P.P. WILL BUILD THIS

T:

TH:CAPABILITY INTO YOUR PROGRAM, OTHERWISE HIT "RETURN"...

AS:

M: Y , YES ,

R: IF K=1 PROGRAM WILL CONTAIN OPENF: AND WRITE: COMMANDS
CY:K=1
R: L IS USED LATER TO OPENF: ONLY ONCE FOR DATA COLLECTION
C:L=1
CAY:10

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE 91

TY: OK, DATA WILL BE COLLECTED AND SAVED ON FILE "“DATA".
FOOTY:

*BEGIN

CH:

R: RESET TEXT VARIABLES

VNEW:S

R: RESET DISK SAVE FLAG

C:U=0

T:YOU MAY ENTER UP TO THREE LINES OF TEXT.
CA:4

T:ENTER YOUR FIRST LINE OF TEXT.

CA:6

A:ST1

CA:4

CL:

C:M=2

T:ENTER YOUR SECOND LINE OF TEXT.

CA:7

M WILL BE LINE WHERE CHOICES START
U:*ALPHA :
CN:M=2

JN:*CHOICES

C:F=1

CA:4

CL:

T:ENTER YOUR THIRD LINE OF TEXT.

CA:8

A:ST3

C:M=4

U:*ALPHA

CN:M=3

CY:G=1

J:*CHOICES

*ALPHA

R: MATCH ANY LETTER
M=E,T,0p1,N:S'H,A,U:R:Y:B'C:D,FrGrJ:KrLrMpP:Q,V,WrXaZrl,2r3,4:5,
MN:6,7,8,9,0,

E:

*CHOICES

CH:

C:Z=M~-1

T(Z):ST1

C:Z2=M-2

T(Z):$T2

C:2Z2=M-3

T(Z):$T3

CA:6 .
T:HERE IS HOW YOUR TEXT

T:WILL APPEAR ON THE SCREEN.....
*ENTERC

CA:9

Section 7: Programs to test PILOT functions.

NEVADA PILOT

p=0
HOW MANY CHOICES IN THIS QUESTION?
ENTER A NUMBER, 2 - 5.

3,4,5,
N:*ENTERC
2,
Y:P=P+1

: 3,
CY:P=P+1
M: 4 ,
CY:P=P+1
M: 5,
CY:P=P+1
J(P) :*EC2
J:*ENTERC
*EC2
C:P=P-1

J (P) : *ENTERC

FAZEURPHEHEO00

R: N = NUMBER OF CHOICES REQUESTED

R: M = ROW WHERE CHOICE 1 WILL BE DISPLAYED
R: O = CURRENT CHOICE NUMBER

R: P = CURRENT ROW NUMBER

C:0=1

C:p=M

Ca:M

CE:

*CLOOP

Ca:10

CE:

T:ENTER CHOICE NUMBER #0.

CA:P

T: (#0)

CA:P,8

R: *CINPUT ACCEPTS AND STORES TEXT OF CHOICES
U:*CINPUT

R: CHECK TO SEE IF N CHOICES HAVE BEEN ENTERED.
C:0=0+1

C:Q=0-N

J (Q) : *GOOD

MORE CHOICES NEEDED

CINPUT
: (1-5)

C:Q=0-3

A(Q):$C4 -
E(Q):

C:Q=0-2

A(Q):$C3

E(Q):

Section 7: Programs to test PILOT functions.

PAGE 92

NEVADA PILOT

C:Q=0-1

A(Q):8C2

E(Q):

A:5Cl

E: ‘
*GOOD

W uonu
[oNeNoReNeNo

3,
os o5 'se o0 e oo

SET J EQUAL TO NUMBER OF CHOICES

2

T e ee
O i

NOODTO0O0OA0
ce e U XEBUOQWD

-~

T:WHICH CHOICE IS CORRECT? (1 TO #N)
CA:10,40

AS:

R: Y IS THE NU4ABER OF THE CORRECT CHOICE
M: 1
CY:a
CY:Y
U(J)
M: 2,

CY:B=1

CY:Y=2

U(J) :*CR

M: 3,

CY:C=1

CY:¥=3

U(J) :*CR

M: 4 ,

CY:D=1

CY:Y=4

U(J):*CR

M: 5,

CY:E=1

CY:Y=5

U(J) :*CR

J(X):*CH1

C:X=2

*CH1

C:X=X-1

J(X) : *GOOD

J: *FEEDBACK

*CR

CY:X=X+1

C:J=J-1

E:

*FEEDBACK

R: COLLECT FEEDBACK TEXT
R: Q IS CHOICE COUNTER
C:0=1

c
>
.—J
o

r
1
1

*("R

~

Section 7: Programs to test PILOT functions.

PAGE 93

NEVADA PILOT

R: R
C:R=M+N
R: P
C:p=M-1
R: S
C:5=0
*FLOOP
R: REMOVE STARS

CA:S

TT(S): (

CA:R

CE:

CA:13

T:ENTER FIRST LINE OF FEEDBACK FOR CHOICE #Q
C:5=P+Q

R: MARK CHOICE #Q, WHICH IS ON ROW #S
CA:S

«kkk

R: COLLECT FIRST LINE ON ROW #T

C:T=R+1

CA:T

:*FINPUT1

Ca:13

CL:

T:ENTER SECOND LINE OF FEEDBACK FOR CHOICE #Q
C:T=R+2 '

CA:T

FIRST ROW AFTER CHOICES

LAST ROW OF TEXT

CHOICE LINE TO BE *** MARKED

]

(o]

INPUT1

COLLECTS FIRST LINE OF FEEDBACK FOR CHOICE #Q
4

SFB5A

W
AW
w
=N
>

w

e I)
W
w
>

e 00 QO se se O se se O 00 0 O
R 72]

WMESESDZIETIZZIY
M | ==l ~~ Il =~ i

*EPEPO@POHPPOEP> OX
w
’-..J
>

L IRT YN TRy T ey T R L TR)

INPUT2

COLLECTS SECOND LINE OF FEEDBACK FOR CHOICE #Q
W=Q-4
:SFB5B

aoOmPO®w
ZEE
1O oo

|

W

Section 7: Programs to test PILOT functions.

PAGE 94

NEVADA PILOT PAGE 95

A(W) :SFB4B
E(W):
C:wW=Q-2

A (W) :SFB3B
E(W):
C:W=Q-1

A (W) :SFB2B
E(W):
A:SFB1B

E:

*LABELS
CH:

T:PRESS Q TO DISPLAY THE QUESTION AND THE CHOICES.

CA:3

T:PRESS F TO DISPLAY THE FEEDBACK FOR THE CHOICES.

CA:5

T:PRESS D TO WRITE THIS SECTION OF PROGRAM ON THE DISK.
CA:7

T:PRESS A TO WRITE ANOTHER FRAME.

CA:9

T:PRESS E TO END THIS PROGRAM

CA:1ll1

AS:

M: Q ,

JIN:*LX

U:*DISPLAYQ

J:*LABELS

*LX1 M: F ,

JN:*LX2

U:*DISPLAYF

J:*LABELS

*LX2 M: D ,

JN:*LX3

U:*DISK

J:*LABELS

*LX3 M: E ,

JY:*END

M: A,

JN:*LABELS

R:IF DISK STORAGE HAS OCCURRED, THEN NEXT QUESTION
J(U) : *BEGIN

CH:

CA:4

Tex*x* WARNING - THIS COMIMMAND ERASES YOUR STORED TEXT FROM
T:x** THE COMPUTER MEMORY... MAKE SURE YOU HAVE STORED IT
Tekxxk ON THE DISK IF YOU WANT TO KEEP IT.

T:*** .

Tek*k IF YOU WANT TO SAVE YOUR PROGRAM ON THE DISK, TYPE "D",
THe*** OTHERWISE "RETURN" TO START ON A NEW QUESTION...
AS:

M: D

UY:*DISK

J:*BEGIN

*DISPLAYQ

CH:

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE 96

CA:3

T:$T1

R: DON'T DISPLAY $T2 OR $T3 IF NO TEXT THERE
T(F):8T2

T(G):$T3

C:Q=N

T(Q): (1) scC1

C:Q=N~-1

T(Q): (2) s$C2

- C:Q=N=-2

CT(Q) s (3) $C3

C:Q=N=-3

T(Q): (4) $C4

C:Q=N-4

T(Q): (5) $C5

FOOT:

E:

*DISPLAYF

CH:

CA:3

C:Q=N

T(Q):1. SFB1A

T(Q): SFB1B

C:Q=N-1

T(Q):2. $SFB2A

T(Q): SFB2B

C:Q=N=-2

T(Q):3. $FB3A

T(Q) : SF33B

C:Q=N=-3

T(Q):4. SFB4A

T(Q): $FB4B

C:Q=N-4

T(Q):5. SFB5A

T(Q) ¢ SFB5B

FOOT:

B

*DISK

R: OPEN FILE TO WRITE PILOT PROGRAM
CREATEF:WAP#I.PLT
OPENF:WAP#I.PLT,H .
RW:H,R: PROGRAM PRODUCED BY W.A.P.P
R: PUT OPENF: ON DISK IF K=1 (DATA DESIRED)
U (L) : *OPNF

J:*OPNF9

*OPNF

RW(K) :H,R: OPENF ONLY ON FIRST FRAME
RW(K) :H,CREATEF :DATA

RW(K) :H,0PENF :DATA,V

R: SET L=0 50 NO 4MORZ OPENF.

C:L=0

E:

*OPNF9

RW(K) :H,RW:V,QUESTION #I (ANS. = #Y)
RW:H,*START

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE 97

RW:H,CH:

RW:H,INMAX:1

R: WRITE (M-1) LINES OF TEXT ON DISK
C:Q=n=-1

RW(Q):H,T:$ST1

C:Q=M=~2

RW(Q):H,T:ST2

C:Q=M-3

RW(Q):H,T:ST3)

R: WRITE N CHOICES ON DISK
RW:H,T: (1) sC1

C:Q=N-1

RW(Q) :H,T: (2) SC2

C:Q=N-2

RW(Q) :H,T: (3) SC3

C:Q=N-3

RW(Q) :H,T: (4) SC4

C:0=N-4

RW(Q) :H,T: (5) S$C5
RW:H,*ANS

R: SKIP A LINE, PUT A-STATEMENT ON SCREEN
C:Q=M+N

C:Q=0+1

R: DON'T ACCEPT ANSWER ANY LOWER THAN ROW 9
C:W=Q~9

C(W):9=9

RW:H,CA:#Q

RwWw:H,CL:

RW:H,A:

RW(K) :H,WRITE:V

RW:H,CE:

C:Q=Q+2

R: DON'T BEGIN FEEDBACK LOWER THAN ROW 10
C:W=Q~-10

C(W):Q=10

RW:H,CA:#Q

RW:H,C:X=0

R: CHECK FOR LEGAL ANSWER
RW:H,C:J=#N

RW:H,M(J): 1 ,

RW:H,U(J):*TD

RW:H,M(J): 2 ,

RW:H,U(J)+:*TD

RW:H,M(IJ): 3 ,

RW:H,U(J):*TD

RW:H,M(J): 4 ,

RW:H,U(J):*TD

RW:H,M(J): 5 ,

RW:H,U(J):*TD

RW:H,J (X) :+*TD1

RW:H,C:X=2

RW:H,*TD1

RW:H,C:X=X~-1

RW:H,T(X) :PLEASE TYPE A NUMBER, 1 TO #N.
RW:H,J (X) : *ANS

Section 7: Programs to test PILOT functions.

NEVADA PILOT

RW:H,J:*0OK
RW:H,*TD
RW:H,CY:X=X+1
RW:H,C:J=J~1
RW:H,E:
RW:H,*0K

R: ANSWER IS LEGAL
R: ABCDE REVEAL THE CORRECT ANSWER
R: Y IS NUMBER OF CORRECT ANSWER
"R: N IS NUMBER OF CHOICES
C:W=M

RW:H,M: 1 ,
RW:H,JIJN:*L2
RW:H,CA: #W
RW:H,Ts**x*
RW:H,PA:1
RW:H,CA:#Q
RW:H,T:$SFB1lA
RW:H,T:$FB1B
RW(A) :H,J: *DONE
J(A) :*LABEL7
RW:H,J:*ANS
*LABEL7
RW:d,*L2
C:W=M+1

RW:H,M: 2 ,
RW:H,IJN:*L3
RW:H,CA:#W
RW:H,T:s*x*x*
RW:H,PA:1l
RW:H,CA:#Q
RW:H,T:SFB2A
RW:H,T:$FB2B
RW(B) :H,J:*DONE
J(B) :*LABELS
RW:H,J:*ANS
*LABELS
RW:H,*L3

R: QUIT IF ONLY 2 ANSWERS (N=2)
C:X=3

C:X=X-N

J (X) : *NOMORE
Ceiw=M+2

RW:H,M: 3 ,
RW:H,IN:*L4
RW:H,CA:#W
RW:H,T:***
RW:H,PA:1l
RW:H,CA:#Q
RW:H,T:$SF33A
RW:H,T:$FB38
RW(C) :H,J:*DONE
J(C) :*LABELY
RW:H,J:*ANS
*LABELY

Section 7: Programs to test PILOT functions.

PAGE 98

NEVADA PILOT PAGE 99

W:H,*L4
QUIT IF ONLY THREE ANSWERS (N=3)

1}

4
X-N

WWOLUONDH

SE‘"A"'
o= X X

o~

RW:H,CA:#W

RW:H,T:**x*

RW:H,PA:1

RW:H,CA:40

RW:H,T:$FB4A

RW:H,T:SFB4B

RW(D) :H,J: *DONE

J (D) : *LABEL1O

RW:H,J:*ANS

*LABEL10

RW:H,*L5

R: QUIT IF ONLY 4 ANSWERS (N=4)

C:X=5

C:X=X-N

J (X) : *NOMORE

CiW=M+4

RW:H,M: 5 ,

RW:H,JN: *DONE

RW:H,CA: #W

RW:H,T:**x*

RW:H,PA:1

RW:H,CA:#Q

RW:H,T:S$SFB5A

RW:H,T:SFB5B

RW(E) :H,J:*DONE

J(E) : *LABEL11

RW:H,J:*ANS

*LABEL11

* NOMORE

RW:H,*DONE

RW:H,CA:14

RW:H,CL:

RW:H,T:ANSWER #Y IS CORRECT

RW:H,*AGAIN

RW:H,CA:1l6

RW:H,CL:

RW:H,TH:DO YOU WANT TO REPZAT THIS QUESTION ? (YORN)...
RW:H,A:
RW:H,M: Y ,
RW:H,JY:*START
RW:H,M: N ,
RW:H,IN:*AGAIN
C:I=I+1
RW:H,LOAD:WAP4#I.PLT
EOF:H
CLOSEF:H
C:U=1

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE 100

E: END OF *DISK ROUTINE
*END
R:END OF WAPP PROGRAM
J (U) :*END2
T:*** IF YOU WISH TO SAVE THE LAST PROGRAM SECTION, TYPE "D"
T:*** OTHERWISE "RETURN" TO END WAPP OPERATION.
INMAX:1
A:
M: D
UY:*DISK
*END2
CREATEF:WAP#I.PLT
OPENF:WAP#I.PLT,H
RW(K) :H,EOF:V
RW(K) :H,CLOSEF:V
EOF:H i
CLOSEF:d
E:

Section 7: Programs to test PILOT functions.

NEVADA PILOT PAGE 101

R: HODGE PODGE HOMONYMES S.WILLIAMS & K.ANDERSON
R: MOD 5/75 & 10/77, J. STARKWEATHER

*

[LRFTIT I ¢
(@]
o]

o XU oMo OQOWwW 3

B~~~ o Wi W uwnunp

*DISPLAY

s O OOO0OOODOOOCOCO

OUWCcOoOOOOO0O00a00O00n0
*
g
o
)
n

88 o o S0 30 65 S0 8 S8 08 60 ee

=

CA:2,48

]

CA:5
T:THIS PROGRAM WILL SHOW YOU ROWS OF LETTERS.
T:
T:PRESS 'RETURN' TO SEE THEM.
INMAX: 1 :
A
U:*DISPLAY

CA:3

T:YOU WILL TRY TO FIND WORDS THAT ARE IN PAIRS - HOMONYMS.
T:

T:THE WORDS SOUND THE SAME, BUT THEY HAVE DIFFERENT MEANING.
T:

T:ONE OF EACH PAIR IS WRITTEN ACROSS, THE OTHER UP AND DOWN.

T:LOOK FIRST FOR THE WORDS ACRO3S.
T:
T:I SAW THE WORDS 'HOUR' ACRO35, AND ‘'OUR' READING DOWN.
T:
T PRESS "RETURN" AND I WILL SHOW YOU.
A:
C:Y=8
U:*DISPLAY
U:*BLINK
*PASS
CA:11
T:TYPE THE WORDS YOU SEE.
T:TRY AGAIN AND AGAIN - I AM KEEPING SCORE TO SEXE HOW MANY
T:YOU CAN FIND IN 18 TRIES. THERE ARE 18 WORDS.
T:TYPE ONLY ONE WORD AT AT TIME, AND THEN PRESS 'RETURN'.
T:YOU CAN ERASE BAD TYPING WITH THE 'DEL' KEY.
T: NOW PRESS 'RETURN' TO START.

Section 7: Programs to test PILOT functions.

CA:16,33

CA:11
CE:

*ANS
CA:12
CL:
INMAX:64
A
C:A=A+1
U:*TEST
C:K=A-17
J (K) : *DONE
J:*ANS

*DONE
CA:11
CE:

T:YOU HAVE HAD 18
T:I WILL SHOW YOU YOUR SCORE.

A:
CA:1l
CE:

T:YOUR SCORE IS #X OUT OF A POSSIBLE 18.
T:PRESS "\" TO QUIT, OR "RETURN" TO TRY AGAIN.

CA:12,55
INMAX:1
A:

CH:
Js*3TART

*DISPLAY
CH:
CA:1,36

T: X Q RA U
ca:2,36

T:VV ANE
CA:3,36

T:E U0 VA X
CA:4,36

T:I P Q NR
CA:5,36

T:NWXTY
CA:6,36

T:Q CDQF
CA:7,36

T:OWRAP
cA:8,36

T:P QRST
CA:9,36

T:P RI NC
CAa:10,36

T:S C ENE

N

L
U
I

Z

[

v P W P A

A

L

B

TRIES,

N

Q
E

N

7]

E

B

N

W O

03]

X

C

Y

D

NEVADA PILOT

A

L

PRESS

T

"RETURN"

PAGE 102

R: AUNT/ANT - VANE/VEIN - HOUR/OUR - PRINCIPLE/PRINCIPAL

Section 7:

Programs to test PILOT functions.

R: SEEN/SCENE

NEVADA PILOT

R: WRAP/RAP - BY/BUY - LITE/LIGHT - IN/INN

E:

*BLINK
CA:2,50
T2e o o
CA:2,62
T:.
CA:3,62
Te.
CA:4,62
T:.
U:*NULL
CA:2,50
T:H O U R
CA:2,62
T:0
CA:3,62
T:U

*TEST
*M1 M:AUNT
JN:*AVIZ
CA:1,42
T:e o o
J(B):*M1A
C:B8=L
C:L=L+1
*M1A CA:B
T :AUNT
J:*EQOT

*M2 M:VANE
JN:*M3

* (O W

*43 M:HOUR
JIN:*M4
CA:2,52
TY:e o o«
J (D) : *M3Aa

Section 7:

Programs to test PILOT functions.

PAGE 103

NEVADA PILOT PAGE 104

*M4 M: IN ,
JN: *M5

UH FOOUR

*M5 M:BY
JIN:*M6
CA:4,56
T:. =
J(F) :*M5A
C:F=L
C:L=L+1
*M5A CA:F
T:BY
J:*E0T

*16 M:MEET
JIN:*M7
CA:5,52
T:e o« « &
J(G) :*46A
C:G=L
C:L=L+1
*M6A CA:G
T:MEET
J:*EOT

*M7 M:WRAP
JN:*M8
Cca:7,37
T:e o o
J(H) :*M7A
C:H=L
C:L=L+1
*M7A CA:H
T : WRAP
J:*EOT

*M8 M:PRINCIPLE
JNz:*M9

CA:9,36
T:e o o o o o o o &

J(I):*48A

Section 7: Programs to test PILOT functions.

C:I=L
C:L=L+1
*M8A CA:1I
T:PRINCIPLE
J:*E0T

*M9 M:SCENE
JN:*M10
CA:10,36
Tse o o o
J(J) :*M9A
C:J=L
C:L=L+1
*M9A CA:J
T:SCENE
J:*Z0T

*M10

*MD1 M:ANT
JN:*MD2
CA:3,42
T:.
CA:4,42
T:.
CA:5,42
T:.
CA:3,20
J(B):*MD1A
C:B=L
C:L=L+1
*MD1A CA:B,20
T:ANT
J:*EOT

*4D2 M:VEIN
JN:*4D3

CA:2,36
T:.

CA:3,36
T:.

CA:4,30
T:.

CA:5,306
T:.

CA:2,20
J(C) :*MD2A
C:C=L
C:L=L+1
*MD2A CA:C,20
T:VEIN
J:*EQT

*4D3 4: OUR
JN:*:D4

Section 7:

NEVADA PILOT

Programs to test PILOT functions.

PAGE 105

CA:2,62
T:.
CA:3,62
CA:4,62
T:.
CA:2,20
J(D) : *MD3A
C:D=L
C:L=L+1

*MD3A CA:D,20

T:0UR
J:*EOT

*MD4 M:INN
JN:*4MD5
CA:3,50
CA:4,50
T:.
CA:5,50
T:.
CA:6,50
J(E) : *MD4A
C:E=L
C:L=L+1

*MD4A CA:E, 20

T:INN
J:*EQT

*MD5 M:BUY
JN:*MD6
CA:6,56
T:.
CA:7,56
T:.
CA:8,56
T:.
CA:6,20
J(F) :*4D5A
C:F=L
C:L=L+1

*1D5A CA:F,20

T:BUY
J:*EOT

*4D6 M:MEAT

JN:*MD7
CA:6,62
T:.
CA:7,62
T:.
CA:8,62
T:.
CA:9,62

Section 7:

NEVADA PILOT

Programs to test PILOT functions.

PAGE 106

‘cat6, 20
) : *MD6A

*MD7 M:RAP
JN:*MD8
CA:6,48
T:.
CA:7,48
T:.
CA:8,48
T:.
CA:6,20
J(H) :*MD7A
C:H=L
C:L=L+1
*MD7A CA:H,20
T:RAP
J:*EQT

*MD8 M:PRINCIPAL
JN:*MD9

CA:2,60
T:.

CA:3,60
T:.

CA:4,60

CA:5,60

CA:6,60
T:.

CA:7,60
T:.
CA:8,60

CA:9,60
T:.

CA:10,60
T:.

Ca:2,20
J(I):*MD8A
C:I=L
C:L=L+1
*MD8A CA:I1,20
T:PRINCIPAL
J:*EOT

*MD9 M:SEEN
JN:*MD10

Section 7:

NEVADA PILOT

Programs to test PILOT functions.

PAGE 107

CA:7,54
T:.

CA:8,54
T:.

CA:9,54
T:.

CA:10,54
T:.

CA:7;20
J(J):*MD9A
C:J=L
C:L=L+1
*MD9%A CA:J,20
T:SEEN
J:*EOT

NEVADA PILOT

*sMD10 R: NO MATCH FOUND */

™

L2

*EOT R: A MATCH WAS FOUND */

C:X=X+1

"

.
dd o

*NULL E:

Section 7:

Programs to test PILOT functions

PAGE 108

NEVADA PILOT PAGE 109

SECTION 7
CONFIGURING AN UNKNOWN TERMINAL

In many cases youwill find the terminal you are using listed for
a simple choice. If it is not listed, you will be asked some
guestions about it and this may be sufficient to get PILOT up and
running. This is an example of one such interaction. 1In this
case the responses are those for a Zenith 2-19 terminal and this
method would not be required. For further customizing of special
cases, the file NVPILOT.PRN provides additional information.

A>NVPILOT

PILOT Version 5.0 configuring

Copyright (C) 1981,1982, J. Starkweather
ANSI Mode Terminal

Apple Computer, 40 column display
Apple Computer + VIDEX 80 column board
Beehive 150 or Cromemco 3100
Flashwriter 1I, memory at FOOOH
Hazeltine 1400 series

Hazeltine 1500 series

Heath H19/H89 or Zenith Z19/Z89
Hewlett-Packard 2621

IBM Personal Computer + 3aby Blue Card
Infoton I-100

HIIOoOmBmoOoOw Yy ®

Type a single letter to select terminal.
<Carriage Return> for more terminals

J Imsai VIO, memory at FOOOH
K Lear-Seigler ADi-3A
L Lear-Seigler ADM-31

TR5-80, Mod. 11 (P.& T. CP/H)
None of the above

4 Microterm ACT-1IV

N Osborne I

O Perkin-Elmer 550 (8antam)

P Processor Technology S0l or VDM
Q Soroc IQ-120/140

R SuperBrain

S Televideo

T

u

Type a single letter to select terminal.
<Carriage Return> for more terminals U

Enter 2 digits for number of lines
in the display. 24

Enter 2 digits for number of characters
per line. ('U' will restart entries.) 80

Section 8: Configuring example.

NEVADA PILOT PAGE

Enter M for memory-mapped display, T for
a serial-connected terminal. (M or T) T

Mfost terminals position the cursor from
a sequence of characters as follows:
Lead characters, differing for
different terminals.
The line number, sometimes offset
Sometimes separator characters
The column number, sometimes offset
Sometimes ending characters
On some terminals column is before line.
Does your terminal follow
this general pattern? (Y/N) Y

Enter no. of lead characters
for cursor positioning. 2

Enter the first lead character
in hex, e.g. 'l1B'. 1B
Enter the next lead character. 59

Enter the no. of line/col separator
characters. 0

Enter the no. of ending characters. 0

Znter offset to be added to line value.
Enter 2 hex characters, e.g. 20 20

Enter offset added to column value. 20
Is column entered before line? (Y/N) N

Following controls will speed editing.
If control is not available, enter zero.

Enter no. of characters to clear screen
and nome the cursor to upper left. 2
Enter two hex characters for each. 1B45

Enter no. of characters to insert line
above cursor position. 2
Enter two hex characters for each. 1B4C

Enter the no. of characters to delete
the cursor line. 2
Enter two hex characters for each. 1B4D

Enter the no. of characters to

turn on reverse video. 2
Enter two hex characters for each. 1B70

Section 8: Configuring example.

110

NEVADA PILOT PAGE

Enter the no. of characters to
turn off reverse video. 2
Enter two hex characters for each. 1871

Enter the no. of characters to
reset the terminal. 2
Enter two hex characters for each. 187A

Enter the no. of characters to

turn the cursor on. 3

Enter two hex cnaracters for each. 1B7935
Enter the no. of characters to

turn the cursor off. 3

EZnter two hex characters for each. 1B7835

Enter 'A' for full PILOT for AUTHOR. A
Enter 'P' to limit DIR to.PLT files. P

Configuring of PILOT.COM is complete.
...Now saving it.

PILOT.COM saved on the default drive.

A>

Section 8: Configuring example

111

NEVADA PILOT PAGE 112

DISCLAIMER

All Ellis Computing computer programs are distributed on an
"AS IS" basis without warranty.

ELLIS COMPUTING makes no warranties, expressed or implied,
including, but not 1limited to, the implied warranties of
merchantability and fitness for a particular purpose. In no
event will ELLIS COMPUTING be liable for conseguential damages
even if ELLIS COMPUTING nas been advised of the possibility of
such damages.

Disclaimer

*

T:
A:
M:
J:
U:
E:
C:
R:

AH:
APPEND:
AS:

BYE

CA:
CALL:
CE:

CH:

CL:
CLOSEF:
CREATEF
DIR
EDIT
EOF:
FOOT:
GET
INFO
INMAX:
JM:
KILLF
LIST
LOAD
MJ:
NEW
OPENF:
PAUSE:
PR:
READ:
REWIND:
RL:

RW:

RUN
SAVE
SET:
TH:

TP:
VIEW:
VNEW:
VSET:
VSTART:
WRITE:
XEQ

XI:

XS:

NEVADA PILOT

TYPE (includes Y: and N:)
ACCEPT ANSWER &+ ¢ ¢ o« o o o o o &
MATCH . « .« .+ .
JUMP.« &
USE . « + o .o @
END ¢« ¢ ¢ o o &
COMPUTE
REMARK. o o ¢ o o &

« o e @

.

.

.

.

* e o o ¢ o

.
.
L]
.
L]
.

ACCEPT ANSWER, STAY ON SAME LINE
ADD DATA TO EXISTING DATA FILE .
ACCEPT SINGLE CHARACTER ENTRY . .
EXIT FROM PILOT . . .« .
CURSOR ADDRESS (ROW & COLUMN) .« .
CALL PROGRAM ELSEWHERE IN MEMORY.
CLEAR TO END OF SCREEN. . « + « &
CLEAR SCREEN AND HOME CURSOR. . .
CLEAR TO END OF LINE. . « « .« &
CLOSE DATA FILE . . .
CREATE DATA FILE. . .

DIRECTORY LISTING . « ¢ ¢ « & & &
EDIT CURRENT PROGRAM.

SET END OF DATA FILE . . « « « .
FOOT OF SCREEN HALT AND PROMPT. .
LOAD BUT DON'T EXECUTE. .
FILE SIZE INFORMATION . .
INPUT LINE LENGTH MAXIMUM
JUMP ACCORDING TO MATCH .
KILL DATA FILE.
LIST THE CURRENT PROGRAM

. - - . .

.

¢ o ® e
L]
L]
.

L[] L[] . . L] . L L]

. « Section 5

LOAD NEW, PROGRAM OR PROGRAM SEGMENT

M: FOLLOWED BY JN:@M. . « ¢ « .« o
ERASE PROGRAM AND RESTART PILOT .
OPEN DATA FILE. ¢ ¢ ¢ o o o o o o«
PAUSE (OF PA:):e « o o o o o .
PROBLEM START (target for J: @P) .
READ FILE ¢ ¢ o o o o o o o o o @
REWIND FILE +« o ¢ ¢ o o o o o o
ROLL SCREEN ¢ ¢ 4 o o o o o o &«
REMARK WITH WRITE DATA.
EXECUTE THE PROGRAM 1IN MEMORY .
SAVE CURRENT PROGRAM. . . .
SET PARAMETERS S, M, & P
TYPE, STAY ON SAME LINE .
TYPE TO PRINTER « « « . e« o o
VIEW SELECTED VIDEO

e & e o o o

CLEAR NUMERIC AND/OR STRING VARIABLES

SET VIDEO COUNTER « ¢« & &« « o o+ &
START VIDEO COUNTER
WRITE INTO DATA FILE (or WR:
EXECUTE (SAME AS LOAD) . .
EXECUTE IMMEDIATE
EXECUTE SYSTEM

* e e S
.
.

available in immediate mode

INDEX TO PILOT STATEMENTS AND

COMIANDS

PAGE 113

NEVADA PILOT PAGE 114

Starkweather, J.A. Computest: a computer language for individual-
ized testing, instruction, and interviewing. Psycnhol. Rep. 17,
227, 1965.

Office of Information Systems, PILOT 1.6 Guide. Report UCS
03.01.01, University of California, San Francisco, 1973.

Starkweatner, J.A. A common language for a variety of conversa-

tional programming needs. Readings in Computer-assisted Instruc-
tion, edited oy H.A. Wilson and R.C. Atkinson, p. 269. Academic
Press, New York, 1969.

Starkweatner, J.A.,Kamp, 4. and Monto, A. Psychiatric interview
simulation by computer. Meth. Inform. led. 6, 15, 1967.

Kamp, M. Evaluating the operation of interactive free-response
computer programs. J. Biomed. Systems, 2, 33, 1971.

Kamp, #¥. and Starkweather, J.A. A return to a dedicated machine
for computer-assisted instruction. Comput. Biol. Med. 3, 293,
1973.

Ellis, C. NEVADA COBOL, Ellis Computing, 1930.

Ellis, C. NEVADA FORTRAN, Ellis Computing, 1982.

Ellis, C. and Starkweather, J.A. NEVADA EDIT, Ellis Computing,
1932.

References

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf

